EDP Sciences
Free Access
Issue
A&A
Volume 585, January 2016
Article Number A103
Number of page(s) 30
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/201525708
Published online 23 December 2015

© ESO, 2015

1. Introduction

The physical and chemical conditions present in low- and high-mass star-forming regions differ significantly. Massive star-forming regions are found to have higher UV radiation fields and levels of turbulence than their low-mass counterparts (see Stäuber et al. 2007; Herpin et al. 2012). The temperatures, feedback mechanisms, magnetic fields, accretion rates, and outflow forces are different between low- and high-mass young stellar objects (for more details see Bontemps et al. 1996; Behrend & Maeder 2001; Beuther et al. 2002, 2007; Palla & Stahler 1993; Cesaroni et al. 2005; Zinnecker & Yorke 2007).

However, many studies have shown that high-mass YSOs behave in certain aspects as scaled-up versions of their low-mass counterparts (van der Tak et al. 1999, 2000; Shepherd 2003; Johnston et al. 2012; San José-García et al. 2013, 2015; Karska et al. 2014a). In addition, the lifetime of the embedded phase of high-mass YSOs (0.070.4 Myr, Mottram et al. 2011) is comparable to that of low-mass YSOs (0.15 Myr for Class 0, 0.5 Myr for Class 0+I, Dunham et al. 2014), even if massive objects evolve more in this period. The line luminosity of molecules like CO, HCO+, and OH scales with bolometric luminosity and envelope mass, as well as the degree of turbulence in the warmer inner regions of protostellar envelopes (San José-García et al. 2013; van der Tak et al. 2013; Wampfler et al. 2013; Benz et al. 2015). Moreover, the kinematics of outflows and envelopes seem to be linked independently of the mass of the forming star (San José-García et al. 2013). Therefore, a further characterisation of the physical conditions and dynamics of these components will help to identify the differences and similarities between low- and high-mass YSOs and better understand the fundamental processes in the formation of stars.

Water is unquestionably a key molecule for studying the energetics and dynamical properties of protostellar environments (van Dishoeck et al. 2011). In particular, the analysis of the velocity-resolved water data provided by the Heterodyne Instrument for the Far-Infrared (HIFI; de Graauw et al. 2010) on board of Herschel Space Observatory (Pilbratt et al. 2010) allows us to characterise the emission from molecular outflows, which play a crucial role in the formation of young stars and in the feedback on their surroundings (Kristensen et al. 2012; van der Tak et al. 2013; Mottram et al. 2014). Given that the bulk of the water data on extragalactic sources out to the highest redshifts and the data provided by the other Herschel instruments (the Photodetector Array Camera and Spectrometer, PACS, Poglitsch et al. 2010; and the the Spectral and Photometric Imaging Receiver, SPIRE, Griffin et al. 2010) on galactic sources are spectrally unresolved, it is important to quantify the different components that make up the observed lines.

Outflows remove angular momentum effectively, which is necessary for the formation of a disk and mass accretion onto the forming star (see review by Lada & Kylafis 1999). The power agent of these structures (either jets or winds from the star/disk system) triggers not only the formation of the outflows, but also extreme and complex physical and chemical processes across the protostellar environment. In particular, different types of shocks take place in the outflow cavity wall at the interface between the cavity and the envelope. Non-dissociative outflow-cavity shocks are localised along the outflow cavity wall (Visser et al. 2012; Kristensen et al. 2012; Mottram et al. 2014). On the other hand, dissociative shocks take place either along the jet, revealed through perturbations known as extremely high velocity components (EHV; Bachiller et al. 1990; Tafalla et al. 2010), or at the base of the outflow cavity wall where the jet or wind impacts directly (Kristensen et al. 2012, 2013; Mottram et al. 2014). These shocks are also called spot shocks. Therefore, shocks and turbulent motions injected into the cavity wall propagating within this physical structure are products linked to the activity of the molecular outflow (Arce et al. 2007). The dynamical nature of these two phenomena (turbulence and shocks) is different, and they also differ from that characterising the entraining gas in classical outflows. To comprehensibly interpret the molecular emission of H2O and 12CO within the outflow-cavity system, it is important to investigate whether the dynamical properties of low-mass objects can be extrapolated to more massive YSOs.

This was one of the goals of the “Water In Star-forming regions with Herschel” key programme (WISH; van Dishoeck et al. 2011), which observed several water lines, as well as high-J CO and isotopologue transitions, for a large sample of YSOs covering early evolutionary stages over a wide range of luminosities. An extensive study has been performed on all HIFI water observations for low-mass protostars (Mottram et al. 2014) and for low-lying water transitions within the high-mass sub-sample (van der Tak et al. 2013). The line profiles of the water transitions were analysed and decomposed into multiple velocity components, which are associated to different physical structures of the protostellar system. These studies investigated trends with luminosity, mass, and evolution and explored the dynamical and excitation conditions probed by these lines. In addition, observations with PACS reveal that 12CO J> 20 transitions originate mostly in shocks for both low- and high-mass YSOs (Herczeg et al. 2012; Manoj et al. 2013; Green et al. 2013; Karska et al. 2013, 2014a,b). The excitation of warm CO is also similar across the luminosity range, but rotational temperatures in high-mass objects are higher than in their low-mass counterparts in the case of H2O, due to their higher densities (Karska et al. 2014a).

In order to link these two studies, this paper focuses on the analysis of the excited water lines across the entire WISH sample of YSOs. The ground-state water transitions of high-mass sources show absorption features from foreground clouds which complicates the extraction of velocity information from these lines (van der Tak et al. 2013), a reason why these lines are not considered in this study. Results from the line profile, line luminosity and excitation condition analysis are connected from low- to high-mass YSOs and interpreted together with those obtained from high-J12CO observations (J ≥ 10). In addition, the obtained results may help to interpret and understand those of extragalactic sources. The aim is to better constrain the dynamical properties of molecular outflows across a wide range of luminosities and complement the study presented in San José-García et al. (2013) based on the analysis of high-J CO and isotopologue transitions for the same sample of YSOs.

We start by introducing the selected sample, the studied H2O and 12CO observations and the reduction and decomposition methods in Sect. 2. The results from the water line profile and line luminosity analysis are presented in Sect. 3 and compared to those obtained for CO. In this section, the excitation conditions are also derived from the line intensity ratios. The interpretation of these results are discussed in Sect. 4, and extrapolated to extragalactic sources. Finally, in Sect. 5 we summarise the main conclusions of this work.

2. Observations

2.1. Sample

The sample of 51 YSOs is drawn from the WISH survey and is composed of 26 low-mass, six intermediate-mass and 19 high-mass YSOs. In addition, the intermediate-mass object OMC-2 FIR 4 (Kama et al. 2013) taken from the “Chemical HErschel Surveys of Star forming regions” key programme (CHESS; Ceccarelli et al. 2010) is added to enlarge the number of sources of this sub-group. The intrinsic properties of each source such as coordinates, source velocity (νLSR), bolometric luminosity, distance (d), and envelope mass (Menv) can be found in Mottram et al. (2014), Wampfler et al. (2013) and van der Tak et al. (2013) for the low-, intermediate- and high-mass YSOs respectively.

The sample covers a wide interval of luminosity and each sub-group of YSOs contains a mix of different evolutionary stages: both low- and intermediate-mass objects range from Class 0 to Class I; and the high-mass YSOs from mid-IR-quiet/mid-IR-bright massive young stellar objects (MYSOs) to ultra-compact H ii regions (UC H ii). The focus of this paper is to analyse different physical properties across the luminosity range; trends within the low-mass sample are discussed in Mottram et al. (2014); the intermediate- and high-mass samples are too small to search for trends within their several evolutionary stages.

2.2. Water observations

The targeted para-H2O 202–111 (988 GHz) and 211–202 (752 GHz) lines and the ortho-H2O 312–303 (1097 GHz) line were observed with the HIFI instrument. The upper energy level (Eu), frequency, HIFI-band, beam efficiency (ηMB), beam size (θ) and spectral resolution of each water transition are given in Table 1. The beam efficiencies of the different HIFI-bands have been recently updated1 and in general the values decrease by 1520% for the band considered here. The presented observations have not been corrected with the new ηMB parameters because the analysis in this paper was completed before the new numbers were available and for consistency with our previous CO study. For completeness, the new beam correction factor of each HIFI-band are listed in Table 1.

The H2O 202–111 line was observed for the entire WISH sample; the 211–202 line for 24 out of the 26 studied low-mass protostars and for all intermediate- and high-mass YSOs; and the 312–303 transition was observed for only 10 low-mass protostars, two out of six intermediate-mass sources and all high-mass YSOs. These water lines are detected for all observed intermediate- and high-mass YSOs and for 75% of the observed low-mass protostars (see Mottram et al. 2014).

Table 1

Overview of the main properties of the observed water lines with HIFI.

The data were observed simultaneously by the Wide Band Spectrometer (WBS) and the High Resolution Spectrometer (HRS), in both vertical (V) and horizontal (H) polarisation (more details in Roelfsema et al. 2012). We present the WBS data because the baseline subtraction for the HRS data becomes less reliable due to the width of the water lines, which is comparable to the bandwidth of the HRS setting. Single pointing observations were performed for all targets in dual-beam-switch (DBS) mode with a chop throw of 3. Contamination from emission by the off-position has only been identified in the H2O 202–111 spectrum of the low-mass protostar BHR71 (further information in Mottram et al. 2014). The allocated observation numbers for each source and line, designated with the initial obsIDs, are indicated in Table A.2 of Mottram et al. (2014) for the low-mass protostars, and in Table A.1 of this manuscript for the intermediate- and high-mass YSOs.

2.3. Additional 12CO observations

Complementing the water observations, 12CO J = 10–9 and 1615 spectra are included in this study to extend the comparison to other components of the protostellar system traced by this molecule and set a reference for abundance studies. The J = 10–9 transition was observed as part of the WISH key programme for the entire low- and intermediate-mass sample and for the high-mass object W3-IRS5 (see San José-García et al. 2013). The J = 10–9 spectrum was obtained for AFGL 2591 from the work of Kaźmierczak-Barthel et al. (2014). For the other high-mass sources, 12CO J = 3–2 spectra are used as a proxy (San José-García et al. 2013).

12CO J = 16–15 observations of 13 low-mass Class 0 protostars were observed within the OT2_lkrist01_2 Herschel programme (Kristensen et al., in prep.). Finally, this transition was obtained for three high-mass YSOs: W3-IRS5 (OT2_swampfle_2 Herschel programme; Wampfler et al. 2014), and for AFGL 2591 (Kaźmierczak-Barthel et al. 2014) and NGC6334-I (Zernickel et al. 2012) as part of the CHESS key programme (Ceccarelli et al. 2010).

2.4. Reduction of the H2O data

The calibration process of the water observations was performed in the Herschel Interactive Processing Environment (HIPE2; Ott 2010) using version 8.2 or higher. The intensity was first converted to the antenna temperature scale and velocity calibrated with a νLSR precision of a few m s-1. Further reduction was performed with the GILDAS-CLASS3 package. The spectra observed in the H and V polarisations were averaged together to improve the signal-to-noise ratio (S/N) and the intensity scale converted to main-beam brightness temperature scale, TMB, using the specific beam efficiencies for each band (Roelfsema et al. 2012). Finally, a constant or linear baseline was subtracted.

All data were then resampled to 0.27 km s-1 in order to compare the results among the water lines and to those from the high-J CO lines (San José-García et al. 2013) in a systematic manner. The rms noise of the spectra at that resolution, the maximum peak brightness temperature, , the integrated intensity, W = TMB, and the full width at zero intensity, FWZI, are presented in Tables A.2 to A.4. The latter parameter was measured as in Mottram et al. (2014): first by resampling all spectra to 3 km s-1 to improve the S/N, then re-calculating the rms and finally considering the “zero intensity” where the intensity of the spectrum drops below 1σ of that rms. The velocity range constrained by the FWZI is used to define the limits over which the integrated intensity of the line is calculated.

Since the spectra have not been corrected with the recently released beam efficiencies of the different HIFI-bands1 (Sect. 2.2), the results presented in Tables A.2 to A.4, as well as those shown in Figs. 3 and 9, should be divided by the correction factor indicated in Table 1. The line profiles do not change if the new ηMB values are applied and the variation of the line ratios is of the order of 1%.

Finally, the C18O J = 10–9 emission line is detected in the line wing of the H2O 312–303 spectrum for five low-mass protostars (NGC 1333 IRAS2A and IRAS4B, Ser SMM1, GSS30 and Elias 29) and four high-mass YSOs (G5.89-0.39, W3-IRS3, NGC 6334-I and W51N-e1). Therefore, a Gaussian profile with the same FWHM, position and amplitude as those constrained in San José-García et al. (2013) was used to remove the contribution of C18O J = 10–9 line from the reduced H2O 312–303 spectrum for each of these sources. The data of these specific YSOs are then analysed and plotted after subtracting the C18O line.

2.5. Decomposition method

As shown by Kristensen et al. (2010, 2012), van der Tak et al. (2013) and Mottram et al. (2014), the water line profiles are complex and can be decomposed into multiple velocity components. The purpose of decomposing the line profile is to disentangle the different regions probed within the protostar, which are characterised by specific physical conditions and kinematics.

Generally, these velocity components can be well reproduced by Gaussian-like profiles; other types of profiles do not give improved fits (Mottram et al. 2014). Depending on the water transition and luminosity of the source, the number of components needed to fit the profile varies. For most of the low-mass protostars, the spectra can be decomposed into a maximum of four different Gaussian components, as shown in Kristensen et al. (2010, 2012, 2013) and Mottram et al. (2014). In order to determine the number of velocity components of the water lines for the intermediate- and high-mass YSOs, these spectra were initially fit with one Gaussian profile using the idl function mpfitfun. Then, the residual from this fit was analysed and since it was larger than 3 sigma rms for all lines, an extra Gaussian component was added to the decomposition method to improve the fitting. The procedure is the same but now considering two independent Gaussian profiles. A self-absorption feature at the source velocity was detected in the H2O 202–111 line for 9 out of 19 high-mass objects, so for those objects an extra Gaussian component in absorption was added in the decomposition method. In some high-mass sources this component is weaker or non-detected in the other studied transitions and it can be negligible (for an example, see the DR21(OH) observations). Therefore, the number of components is determined by the spectrum itself and its S/N and not by the assumed method.

As in Mottram et al. (2014), we force the FWHM and central position of each component to be the same for all H2O transitions of a given sources. This procedure is adopted because, as for the water observations of the low-mass protostars, the width of the line profiles does not change significantly between the different observed transitions of a source (see also Fig. 2 of Kristensen et al. 2013, for several low-mass protostars), suggesting that in each case the emission from the excited water lines comes from the same parcels of gas. While these two parameters are constrained simultaneously by all available spectra of a given YSO, the intensities of each Gaussian component are free parameters that can vary for each transition. The resulting fits were examined visually as a sanity check. The values of the FWHM, Tpeak, νpeak, and integrated intensity of each Gaussian component are summarised in Tables A.5 to A.7.

2.6. Association with physical components

The multiple velocity components needed to reproduce the H2O line profiles can be related to physical components in protostellar systems (Kristensen et al. 2011, 2012; van der Tak et al. 2013; Mottram et al. 2014).

Quiescent inner envelope gas produces a Gaussian profile in emission with the smallest FWHM centred at the source velocity (see Sect. 3.2.2 of Mottram et al. 2014). In previous studies these velocity components were called narrow components. The cold outer protostellar envelope can cause a self-absorption, which is more common in ground-state H2O lines and in objects with massive and cold envelopes (e.g. van der Tak et al. 2013; Mottram et al. 2013).

The chemical and physical conditions present in shocks increase the abundance of water molecules by sputtering from the grain mantles (Codella et al. 2010; Van Loo et al. 2013; Neufeld et al. 2014) and/or by the action of the high-temperature water formation route in the warm post-shock gas (van Dishoeck et al. 2013; Suutarinen et al. 2014). The line profile resulting from shocked water emission depends on the nature and kinematical properties of the shocks generating it, which translate into velocity components with different features (see Table 3 and Sect. 3.2 of Mottram et al. 2014).

The emission from non-dissociative shocks in layers along the outflow cavity wall produces velocity components with the largest FWHM (>20 km s-1) and are generally centred near the source velocity (Kristensen et al. 2010, 2013; van Kempen et al. 2010; Nisini et al. 2010; Suutarinen et al. 2014; Santangelo et al. 2014). However, these broad Gaussian-like profiles, named cavity shock components (Mottram et al. 2014) or simply broad components, should be differentiated from the broad velocity component identified in low- and mid-J (J< 10) CO spectra, even if shape and width are similar. The reason is that the water emission originates in shocks in the cavity while the CO emission comes from cooler material deeper in the wall and closer to the quiescent envelope (Raga et al. 1995; Yıldız et al. 2013).

In contrast, spot shocks occur in small localised regions and are associated to hotter and more energetic dissociative shocks (Mottram et al. 2014). This emission may originate in extremely-high velocity (EHV) gas along the jets (Bachiller et al. 1990; Tafalla et al. 2010; Kristensen et al. 2011) or at the base of the outflow cavity (previously referred to as either the medium or the offset component; Kristensen et al. 2013). These Gaussian profiles show smaller FWHMs than those measured for the cavity shock component and are in general more offset from the source velocity. A more detailed characterisation and discussion can be found in Mottram et al. (2014), van der Tak et al. (2013) and Kristensen et al. (in prep.).

The contribution of the cavity shock and envelope components with respect to the total integrated intensity of the water lines for the low-, intermediate- and high-mass YSOs are presented in Table 2 together with the analogous contribution from the entrained outflowing material (broad) and envelope gas (narrow) components for the 12CO J = 10–9 line (ratios derived from San José-García et al. 2013). The values for the low-mass Class 0 and Class I protostars were calculated by Mottram et al. (2014) for different water transitions as well as the fraction corresponding to the spot shock component (see Table 4 of that manuscript).

thumbnail Fig. 1

Left figure: averaged and normalised spectrum calculated for the low-mass Class 0 (LM0) protostars, the low-mass Class I (LMI), intermediate-mass YSOs (IM) and high-mass objects (HM) for the H2O 202–111 988 GHz (left panel), 211–202 752 GHz (middle-left panel), 312–303 1097 GHz (middle-right panel) transitions and the 12CO J = 10–9 (right panel) spectra (see San José-García et al. 2013). The spectra of each sub-group of YSOs have been shifted vertically for visualisation purposes. The low intensity features on the blue wing of the H2O 211–202 high-mass profile are due to methanol emission. Right figure: H2O 202–111, 211–202 and 312–303 spectra plotted in red, blue and purple respectively for NGC 1333 IRAS4B (LM0), GSS 30 (LMI), NGC 2071 (IM) and W33A (HM). The horizontal light green lines in both figures represent the baseline level.

Open with DEXTER

Table 2

Average fraction of the integrated intensity that the narrow (envelope) and broad (cavity shock or entrained outflowing material) components contribute to the total integrated intensity of the H2O 202–111 (988 GHz), 211–202 (752 GHz), 312–303 (1097 GHz) and 12CO J = 10–9 lines.

In the following, the different velocity components of the water and CO lines are distinguished according to the terminology based on the probable physical origin of the emission and the width of the profile.

3. Results

The basic properties of the spectra and their decomposition are introduced in Sect. 3.1. In Sect. 3.2 the results of the line profile decomposition are compared to those obtained for the high-J CO observations described in San José-García et al. (2013). The water line luminosity properties are also compared to those of CO in Sect. 3.3. In Sect. 3.4 integrated intensity ratios calculated for different pairs of water transitions are presented and these line ratios are further studied as across the line profiles in Sect. 3.5. Finally, the excitation conditions of the water lines are analysed with the non-LTE radiative transfer code radex in Sect. 3.6.

3.1. Water line profile characterisation

The observed H2O 202–111, 211–202, and 312–303 spectra for the intermediate- and high-mass YSOs are presented in Figs. A.1A.3, respectively. The Gaussian profile fitting the broad (cavity shock) component of each water transition and source is indicated with a pink line. The spectra of the low-mass protostars are shown in Appendix A of Mottram et al. (2014).

In order to easily compare all the data, normalised averaged spectra of the H2O 202–111, 211–202 and 312–303 transitions are computed for the low-mass Class 0 and Class I protostars, the intermediate-mass sources and high-mass YSOs, as shown in the three first panels of Fig. 1. These spectra are calculated for each transition by shifting each spectrum to zero velocity, normalising it to its peak intensity and averaging it together with the observations of the corresponding sub-group of objects. The presence of self-absorption features for some of these sources, which are stronger for certain water transitions, prevents the normalised averaged spectra to reach unity for several of these lines. Independently of this issue, the normalised averaged spectra obtained for the three H2O transitions are similar for each sub-type of YSOs. Only the H2O 202–111 high-mass averaged spectrum shows a slightly different profile with respect to the other two water lines because a larger number of YSOs show strong and deep self-absorption features. Except for the Class I protostars, the averaged spectrum for a given transition seems to be broader for the low-mass objects, but at the base of the spectra the widths are similar, independent of the luminosity.

In the right-hand panel of Fig. 1 the three H2O transitions (202–111 in red, 211–202 in blue and 312–303 in purple) are over-plotted for four different sources: a low-mass Class 0 (NGC 1333 IRAS4B), a low-mass Class I (GSS 30 IRS), an intermediate-mass objects (NGC 2071) and a high-mass YSO (W33A). For each source, the shapes of the three water line profiles are similar but scaled-up in intensity, a result that is confirmed from the visual inspection of the water line profiles of all YSOs. In particular, the line wings are very similar. This indicates that the three water transitions are probing the same dynamical properties in each source.

Moving to the outcomes from the line decomposition explained in Sect. 2.5, the analysis suggests that the quiescent envelope and cavity shock components are the only two physical components consistently present in the H2O 202–111, 211–202 and 312–303 spectra of all low-, intermediate- and high-mass YSOs. The spot shock components are not detected for the excited water lines presented here towards high-mass YSOs and six out of seven intermediate-mass objects, though they have been seen in absorption against the outflow in some ground-state H2O lines for some high-mass sources (for more information see van der Tak et al. 2013).

As shown in Table 2, for a given sub-sample of YSOs the averaged contribution of the cavity shock component with respect to the total integrated intensity of the line is the same for the three water transitions. This fraction seems to decrease from low- to high-mass, but no statistically significant trend with Lbol can be claimed because the specific contribution of the cavity shock emission varies from source to source. The remaining emission comes from the envelope in the case of the low-mass Class I, intermediate- and high-mass YSOs and from spot shock components for low-mass Class 0 protostars (Mottram et al. 2014). This picture is consistent with the average spectra presented in Fig. 1, where the envelope component of the water lines is more prominent for the high-mass sources than for their low-mass Class 0 counterparts. In addition, this narrow component associated with the envelope is also less prominent in the H2O 312–303 transition regardless of the YSO mass, as expected since the envelope is presumably composed of cool quiescent gas.

Independently of these numbers, in this paper we focus on characterising the physical conditions causing the line-wing emission in the water line profiles, i.e., the broader velocity component associated to the shock emission along the outflow cavity.

thumbnail Fig. 2

Top: FWZI of the H2O 202–111 (988 GHz) emission line versus the bolometric luminosity. Middle: same as top panel but for the 12CO J = 10–9 and J = 3–2 observations. Bottom: ratio of the 12CO and H2O 202–111 FWZI values as a function of Lbol. The blue plus symbols correspond to the low-mass Class 0 protostars, the black triangles the low-mass Class I, the green asterisks the intermediate-mass objects, the pink crosses the high-mass YSOs for which the 12CO J = 3–2 spectra are used, and the red cross symbols the high-mass object for which 12CO J = 10–9 data are available (see San José-García et al. 2013). The low- and intermediate-mass sources with detected EHV components are surrounded by a box, as well as the high-mass YSO with triangular water line profiles.

Open with DEXTER

Table 3

Averaged rms value in 0.27 km s-1 bin and mean (dash) values of the FWHMb and FWZI for the three water lines and the 12CO J = 10–9 spectra for each sub-type of YSO.

3.2. Comparison of the H2O and 12CO line profiles

The fourth panel in Fig. 1 includes the normalised averaged 12CO J = 10–9 spectrum of each sub-sample of YSOs. The procedure followed to obtain these spectra is the same as that used for the water data. These averaged profiles are clearly narrower than those of water, especially for the low-mass Class 0 protostars, and the width of the spectra seems to increase from low- to high-mass. Therefore, just from a basic visual inspection of the water and the high-J CO normalised averaged spectra we can point to differences in the shape of the line profiles of these two molecules and a different trend in the width from low- to high-mass.

To consistently compare the dynamical conditions of the entrained outflowing material traced by CO and the shocked gas along the outflow cavity, the line-wing emission of these two species is analysed using two parameters: the FWHM and the FWZI (see Sects. 2.4 and 2.5). Both variables are used because FWHM characterises the average extent of emission from the source velocity while FWZI characterises the fastest material. For simplification, the FWHM of the Gaussian profile reproducing the cavity shock component is differentiated from the other velocity components by using the sub-script b to indicate that this is the broader velocity component obtained from the line decomposition.

The top panel of Fig. 2 shows the FWZI for the H2O 202–111 transition as a function of bolometric luminosity (in Fig. C.2 the FWZI of the other water lines are also plotted versus Lbol and envelope mass). Similarly, the constrained FWHMb from the cavity shock component (same for all three lines) versus Lbol and Menv are presented in Fig. C.1. The FWZI values vary from 15 to 189 km s-1, while the FWHMb range from 13 to 52 km s-1. Due to the large scatter and dispersion of the data points, no trend or correlation with luminosity can be claimed in either case. The smaller FWZI and FWHMb values are those of the low-mass Class I protostars, consistently lying at the bottom of these figures. In addition, the low- and intermediate-mass YSOs which show EHV components are marked with squares in Fig. 2 to indicate that their FWZI was calculated including the spot shock emission and to investigate if there is any particular trend for these objects. The spectra of the marked high-mass object do not have EHV components but their line profiles are characterised with broad and triangular shapes. More information about these specific sources can be found in Appendix B.

As indicated in Sect. 2.3, the 12CO J = 10–9 transition was not observed for most of the high-mass YSOs. However, those sources for which both 12CO J = 10–9 and J = 3–2 transitions were available, the values of the constrained FWHMb and also FWZI are similar within the uncertainty (see San José-García et al. 2013). Therefore, the J = 3–2 transition is used as a proxy of the J = 10–9 spectra for the study of the kinematical structure of the outflowing gas. The FWZI and FWHMb for the 12CO observations (middle panels of Figs. 2 and C.1 respectively) are spread across a smaller velocity range than that for water. In addition, the FWZI shows less scatter than the FWHMb. There is a statistically significant trend of larger FWZI for more luminous sources (4.7σ4) with a Pearson correlation coefficient r = 0.72, which is also seen to a lesser extent for the FWHMb.

Table 3 presents the mean FWHMb and FWZI values for H2O and 12CO and the averaged rms in a 0.27 km s-1 bin, σrms. In the case of the high-mass YSOs, the derived values are not affected by the higher σrms in those data (as left panels of Fig. 1 already show) since the actual signal to noise, S/N, on the water spectra themselves given by the peak intensity relative to the rms are higher (averaged S/N value of ~60) than those of their low-mass counterparts (averaged S/N of ~20).

Without considering the low-mass Class I protostars, which are more evolved and therefore have weaker, less powerful outflows (Mottram et al. 2014), the average FWHMb and FWZI values derived for H2O are similar from low- to high-mass (Table 3). A decrease of the mean FWZI values with increasing luminosity is only hinted at for the H2O 202–111 transition. Combining the results from both FWHMb and FWZI we conclude that the extent of the water line emission is similar for the entire sample. In contrast, and as suggested by the middle panel of Fig. 2, the averaged values of both FWZI and FWHMb for the 12CO observations seem to increase with luminosity.

The dispersion observed for the FWZI and FWHMb in both H2O and CO could be related to the intrinsic properties of the source, such as its inclination, evolutionary stage, clustering, etc. In order to minimise possible effects caused by these inherent characteristics, the ratio of the FWZI derived for the 12CO observations and the FWZI of the water lines is plotted versus the bolometric luminosity in the bottom panel of Fig. 2. The same procedure is followed for FWHMb of the 12CO and water spectra (see bottom panels of Fig. C.1).

thumbnail Fig. 3

Line luminosity of the H2O 202–111 (988 GHz) line emission (top), the H2O 211–202 (752 GHz) data (middle), and H2O 312–303 (1097 GHz) spectra (bottom) versus the bolometric luminosity of the source. The blue plusses correspond to the low-mass Class 0 protostars, the black triangles the low-mass Class I, the green asterisks the intermediate-mass objects and the red cross symbols the high-mass YSOs. The solid line indicates the linear correlation of the logarithm of the total line luminosity, log(LH2O), and log(Lbol). The dashed line shows the log-log correlation of the luminosity measured for the broader Gaussian velocity component only (cavity shock emission; Lbroad H2O) and log(Lbol).

Open with DEXTER

Independently of the use of FWZI or FWHMb, a correlation between these ratios and Lbol is measured for each of the three water lines with statistical significance between 3.3σ and 5.0σ (Pearson correlation coefficients between 0.50 and 0.75). While 12CO J = 3–2 and 10–9 may trace different layers in the outflow (Yıldız et al. 2013; Santangelo et al. 2013), the FWZI, i.e., the maximum offset velocity (νmax), of the CO lines does not change with the ction of the water and the high-12CO J = 3–2 and 10̵of the 12CO J = 10–9 and b in both H2, resents tpan centred neith luminosity luminositys="simple-math">Lbol. The blue plus HM12CO b values are those of tal ined neth the three s="simple-math">12CO and H2O 212CO observations and the Fntly lying an classrticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R39">Mottram0en et al. 2013).. t. 2.317">4e FWZI vlass="sec2"> 3.2v classlas. osity of the HσW/span>&up>47;an>CO oi>TolO 2d>max2.3 and 2, 7 resndicate tarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#T2">2, 9 res4lly, thow-mair lss="simple-math">2O 202–111 (988 GHz) can poinson con against thete. The blue normalisintpan intensity of the watwad iny basend the 0 ksults fr features. Except ef="/sub-scripte ta CO and thelineterselocity cine versure charace broad (cavf each sThe disperSctual sig across YSOs the averagced fof twiden that FWZIof the Hiifferenhed anore inWHM<4-6 sLH2O), and logture is the FWHEXTk Santan hreWu13).. <05href="/e-m loggf telocity cbeamisticalize to the terminref="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#T2">2, lready sho="/ifferee blue he spectra ofy (see ~20).

C.1LH2O), and log(LH2). The dashedAd deep sn between these ratios cof the total lind pquet Hiiffd for each o( indicngles osit)of the three water lineependena ofrrelation coefficients between n s="simple-math">Lrastransitio,sbroI for mfor w0.9ed cross argers the wdted fved anfor w sevenimierctrmagnithe espan claaxnden the constrad deep sn between then to a or each oese ratios cof the total s="simple-math">LH2O), and loged cross of the total lineass). Similarn s="simple-math">Lenv are presenm panef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.17. 12bol and Menv are presented in Fig. 2, 4up>) wi 3"> Table 3

Line lumin: FWZIfself as top. Simss="simple-math">middle<>), and Hmiddlen>), and Hmiddler>) versus thefile. 2O lines for somey propertiesa cross of the total line luminosity (in Fig. 12bol and -co (instra (sd cross of the total lineass). Similar12env are prese, nel panelco (instra (m: ratifself as topt used abed ,he Lbol is measureee s="simple-math">12env are presev>

Table 3

Line luminAlues of both FWZI ss="simple-math">2O lines for someyratios calculatedudy of th along the outflow cavity, the line (b>212Tol), >󅔓9 a Kiv>

In the folline . Simresponding sl the FWZ narrir lso severa uncertainty (see Santan3hreLinke13).1977s pictuIase. The smalintpan intos calin insgh-mass the caater linebeam-ontribution (in d averaging it toge y stal pthe waten lineanebroad WZI aAdm loggfhree wate< stal shoc (in d averagen lined are ase sand thes and en ntermediaprofile are de shown icked gas blue geminosyar, independenion between these raticlass="simple-math">LH2O), and log(span class="simple-math">Lbol).

Lbol can be cla. 2.4>.

2.519">4eents tifferdied asledcu versctureesss="simple-math">12–303 transition regardlesslog-log colocityetaYSOs show HV comre asw-mass Class 0 pr, which are more eelatedin Sected valein the sgen linespan clastine . Simct to the totaho water lines because ature isrelation of the logariclass="simple-math">LH2O), and log(span class="simple-math">Lbol).

San Jor Tak et al. 2013).

As shown irocedure n between these ratios cs="simple-math">12CO observatio may trace somey propertiesa crs="simple-math">Lbol can be clawad or each oey/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San José-García et al. (2013). Theintpas caf="/6 water line for each t . Simrespondrelatioe b e as that us uncertainty (see Mottrasé-García et al. 2013). Therefoven su those H<)edAs to a ed h oey/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jom et al. (2014).

,ass Class 0 protostarsan for tseen lthose luminosity propertiir their es dotostarshich are dlarge f the mesespan clahe FWZI (Sects. 12CO J = 10–9 and San Jom et al. (2014).

quiescent lein the sgen s for ine versuese ratid Class I protostarsd high-m is the intrinsic f the moup oargegspectra sevity, thI pred bfare higeedve lines. and cavitAs shown iroce intensity of the watomes from thoup avity shock componenthe broader vee ta ssian profile reproducine broad (cavemission s,hen to a wi forintrinosity, log(LH22O) and log( theaddi/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.1LH2). The dashedAasw-mass C luminosity, log(νm17C.1LH22O) and log(sa crs="simple-math">Lbol can be cla(e showsngles osit)of th those HLH2O), and log,o( indicngles osit)turees: the FWHMtine decomprelation of the luonstraineb>22, 4up>) wi Cwith the average spI for momponent of of the cavf thsources (for more i 2, for a gi)cent lein the sshese ratios cfi-mass Cs="simple-math">LH2O), and loged crs="simple-math">LH22O) and log(sarspI for mree lines) versus < gh-mass sources thaof YSOs. As shown irocefacconfirmw Appendis that us deep sn between these raticlass="simple-math">Lbol).

LbolO), and log(ss Claass="simple-math">Lbol2O) and log(2σbol can be clas) have umber of anebroad e ta vlass="sec2"> 3.23 classla4tuIantensity of the wat 2.4.

qomponuiescente oadel brl- are ut water are he FWZese rativity, t- the int for low-mass Cos Class 0 anYSOs. AsTeen ompoedis ee wate aredel sgen linevptined nethint -up used bNGCthiwid armelire isvalu quiescent s presented here towari water.he kinnded bYSOavemed neter linndlarge scaithsour che tionsdativeiarn those of Cr veeal to gad inhe water lineanebroad d are lire isfrousing lthossr Fin haf-absorcollisge, d in-per lt theder comwhin twilltd dispersionmedil to netd dpused if wate aredeable,vptined nethiw. Wetwilltthe wdtcebrohe kine wit- and high-mass YSOs and from ,cfirsing the low-mass Cgrated intensity of the lin

Table 3

Line lumin: FWZIfpig. 11–202 (752 GHz) data (02–111 (988 GHz) line emisss presented bolometric luminosity of the source. The blue p/i>: samefpig. 2O 312–303 (1097 GHz) spectra (02–111 (988 GHz) line emiss can poian class="simple-math">Lbol and : ratifpig. 12–303 (1097 GHz) spectra (02–202 (752 GHz) data (Lbol. The blue plus nel-co (in ol

Open with DEXTER

IndependenTondns and the FWa pointsayers in sitions are probinseen layers in beamilize omore em basbcag betcredak intening to the spobeam-lize σ–2σ<2an>. The blue phose sourcecag betcrn thof thester speclize tan re line profianebroad d are i uncertaint, which hiweefych mgced fedak ie thrbeam. I profianes from thessic visuifferee blueurcecag betcrn thfaccorentiss="simple-math">L–2σ<2an>. The blue)s="simple-math">12CO L–2σ<2an>. The blue);rediat profianebroad d are iced fofn claaxndios cfaccoreese itsu1"/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R76">Y睟/spafed 013). Th0>

AsFan clasn the long lumins thsass thtset velin iip sn betcrn thwlated to2.1,aing to the spot ssuiffer-s blue in iip srce, suss="simple-math">11–202 (752 GHz) data (12–303 (1097 GHz) spectra (San Jo41">Nicw-i13). Th0> Santan 2re et al. 2013), th averagarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan 4"> the ave;/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#S6">2.4 the averase of ied ialintpananebroad e tatelated toXTk ction wiinedss Cmedi adm le of Cfilhfn clabeamsAsSaase. The ass beamig betcrn thfaccorentiss="simple-math">L–2σ<2an>. The blue)ss C1"/icatminohoad ithese ratiw-mavOave,sed anelon,ex geminos so>AsFan clasit- and high-mass YSOs and from atb e aed anelon,Sect. L–2σ<2an>. The blue span cf the thrpair.ransitionalso plottin Sect. 2, 5">5) wi Thas 2O lines for ss="simple-math">11–202 (752 GHz)/sss="simple-math">02–111 (988 GHz);sss="simple-math">12–303 (1097 GHz/ss="simple-math">02–111 (988 GHz);sclasss="simple-math">12–303 (1097 GHz/ss="simple-math">02–202 (752 GHz) nded WZIeaion of bolometric luminosity (in Fig. 1 a4up>) wi,mly) are spre. lus span clastinsne L–2σ<2an>. The blue relation betce cavf thss Class 0 pr, which artass ss="simple-math">L–2σ<2an>. The blue)s="simple-math">12CO C.1) wi to a lWZI for txing rineds σTol), and log,oflo300 Ksd cross at usbeamilize fan clasn those of are probingottedm le tra of thees caYSOs ssaing to the spot se thrd armecf the thrpair.ransitionalso plottrn Fig. 2, 5">5) wi WtoXTk ss="simple-math">σTol), pan>76;#808211;9 a KWHM charae broader veh mperae outppendifan clasnk component (same for by"/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R39">Mottram et al. 2014), the aver. Ao aagarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan24upK ark2013). Theind crron the sshr lin>

qor the e class/sH fochel olSantangelo et al. 2013), the FWZI. Noeir FWZIf thsoursdativeiar,profiper lt thesh mperae outap, w thndios cl st tcgh mperae ou Thas 11–202 (752 GHz) data (02–111 (988 GHz) line emissf are probin(pan-s of Fig. a href="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F1">1 a4up>) wi) lWZI fant trend of lith luminositys="simple-math">Lbol. The blue plus arger FWZ, sunon-beam-g betcreda Lrastransitio,seque, S/N0.83lire isith luminosity.

een to a lessews nccechtset velbeamig betcrn thfaccoref the thrsof te Hphe averag(derelatt. middler>) vpan>,85>

Lin>Th the 2O lines for f are probinid abed 1ity shfow-mair lan for twiitys="simple-math">Lbol. The blues="simple-math">νgt;R>CO 3an>CO ub>bol12–303 (1097 GHz) spectra (02–111 (988 GHz) line emissof the lin

enels of-s of Fig. aef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F1">1 a4up>) wi) phose sourno arger cked in laih. < th?al significanal isWHM charae ence between 3.FWZ, surrelation coefficient σ (Pearson cos="simple-math">middler>) v<&0.5>

Lin d crs="simple-math">LNspan>R>

Lin>Th thsne 12–303 (1097 GHz) spectra (02–202 (752 GHz) data (Lbol. The blue pOnor gaclasa arger ckeed bbe- laih. σ and 5.0middler>) v<&pan>22;0.5>

Lin d crs="simple-math">LNspan>Q>

Lin>Th/ C those H1 a4up>) wiqomponuiescom low- ge both lottvom the llFWmaca intensity of the lin Lbol. The blue pA arger osity.

een to a ty shor the FWZI and Fss="simple-math">11–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) of the lin r = 0.7211–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) Lbol can be clahat the quiescent ane the source velh along the outflow cavity, the line HM thessed ander lin,ebroadewarmpersio/I adatisourZI aed an 0 p rmshe spectra ofss="simple-math">12–303 (1097 GHz/ss="simple-math">02–111 (988 GHz) Lbol can be claFWHM12–303 (1097 GHz/ss="simple-math">02–202 (752 GHz)

,an clan FWZIce the lcinge witl significa nel trend of m22, 5">5) wi,with the observos lbeamilize σTol), =#808211;9 a Kiv thsne including H11–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) intensity of the lin 12–303 (1097 GHz/ss="simple-math">02–111 (988 GHz) ra ex 88 GHz)willt inese ia href="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#S5">2.31.

3.24uplassla5tuIanthe lin 2O and CO could bs="simple-math">12CO C.15) wi lWZI for t including are he FWource, suss="simple-math">2O 302–202 (752 GHz) data (12–303 (1097 GHz) spectra ; 11–111 (988 GHz) line emission (gon of 2.4.

tra ofgreewidth rows the12CO σ and 5.0σ<| >max22; >max), | >gt;&3pan>22;5>

Lin kmils="simple-math">12CO

Table 3

Line luminAlues of ss="simple-math">2O 302–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) 2O 312–303 (1097 GHz/ss="simple-math">02–111 (988 GHz) someyratios calculatt(Mottram et al. 2014), the aver,wit- and high-ts and the re(IM;fgreen osit shoasr siskspan class CYSOs and from a(HM;frows then claline o )tureese showsgreewidth rowsd are ashat their Fca for each t ttanardtf vihe luminositylare he FWZf the thromponent o thg. .

Open with DEXTER

Independen

Table 3

Line luminSt used ef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F1">1 a5">5) wi e 12CO

Open with DEXTER

IndependenAstppendifan claslass 0 protostars, the black sitylare ratios calculatedlesmisWZesf witfof lton of m low- tee lehe peae blue pss a basin insgin ratios cal(ef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.1ready s,rrfere>AsFan clasYSOs and fd the r,stine νgt;12CO 02–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) C.112CO σ–9 and σᡃ12O 302–111 (988 GHz) line emission (he FWZton of 12CO σ–9 and 2O 302–111 (988 GHz) ion (he FWZf the meseosityomponente FWHM12CO σᡃ12O 302–111 (988 GHz) 2O 302–111 (988 GHz) ent wittue abservomponent line profitacross omponent et- avmplire isagreesabserve hig11 (988 GHz) gh-massandlinemoleculcsabeoup onferent greaspersionae H2.42.5m low- per lt theseocilonditions of the enThFan claslass 0 protostarshich are class="simple-math">12CO 2O 3)n ly-he p.) vlass="sec2"> 3.25uplassla6. Eer lt thes causing the fourtho minimise po tracc sis.oos laer lt thes causing tt the lcts caudy of tb>22O 311 (988 GHz)ay trac0s="simple-math">02 (988 GHz) s. This frrourceMs="simple-math">11in: Fc> and 5CO .ly-he p.) f="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#S7">2.5).. The)refoven susityratiand highmass YSOs and from at ssugrir FWZnon-LTEgs="simple-mathocitcaps">ra ex 88 GHz) for eacrobin(nR53">Santan6hrek et al. 2013). <07s pictuWineseaainepure modetweethe San Jom et al. (2014).

ifan claslass 0 prnk component (same for2O 32O 302–111 (988 GHz) eintensity of the linass 11chmνO), =##82>CO 5d 5CO pan>22;4 ×R>CO 6d 5CO 12CO LNspansub>O), =##82>CO 17d 5CO 02O 18d 5CO 12CO 1 a7">7

tra ose ge both lott>m low- rinothos-inhe wats stage,mrom the lis Cos Class 0 anYich ar ey/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jom et al. (2014).

i-up sticalnferent ber of anebroad d are aslize ,sequi H< in rinra hioflo300s="simple-math">νan>22;2O 302–202 (752 GHz)ylare enderphe carefsionmne the sertaintss="simple-math">11 (988 GHz)ay trac0s="simple-math">02 (988 GHz) lare ed fphe carefdlentenmodelsAsFan clasYSOs and from ,cgoodoe bs ckedty shbutppendifan 6alastine19shich are bservos lbestoe bs gaclehe oup om low- d aver sou shoc (in d aver sousionmnebroad d are as thaoup avity800 rin6000pan 01;AU hose sourmedi thstinsne meseos lbest-e b modelst with the shenderphe cartaintss="simple-math">2O 302–202 (752 GHz)yf are probtraon t thdan lf wttedm le a cird for geminosymree linehich are e higLLLra ex 88 GHz)modelst wiroauedhenderphe caeflow cass="simple-math">2O 302–202 (752 GHz)yf are probe t of the lulource. Th dvpth oh mperae ouasI predhesete oe stage,shable,ppendlire ishat the quiescent aer lt theslastinsnevr the FWsitionalso p( class="simple-math">LEspansub> (988 GHz) eit that upw-mas="simple-math">LSan Jom et al. (2014) the aver. Aoonerve um lulgnifiponent environm in hton o that FWZh mperae ouonssis wlatedphevid. om low- are he FWouvencertainty (see 1 a5">5) wi)urmedi tnositylare re char is (samemi lsorck comptan rpwitlnent ene versdebroadethe more eentirmlayers in h mperae ouonef="/ef="/9 raiarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jom et al. (2014) the aver. Iuetd the eurcebro t thsre ilou with the abserve hige bots raiarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jo25upK ark2013). Th4a)refovewh priionom low- golt thee, S mperae ouonfan larm CO ane the slr the FWsservPACSfree clasgh-maediaprofile aror morem

Table 3

Line lumins="simple-mathocitcaps">ra ex88 GHz) e both f thss Cpectra are he FWoufan clasnk component (same fors adm loggfatl st tcgh mperae ouslass="simple-math">LTspan>󅔓9 a Kiv tht-hpan : g. s olσ (Pearson c wim e lce lm lnd (es co wirs ra) tee lehrir hra="simple-math">νO), LNspansub>O), σ (Pearson ,minositybest-e b model f the thrss="simple-math">2O 3

Open with DEXTER

IndependenSinartaintvr the FWss="simple-math">2O 302–202 (752 GHz)/ss="simple-math">02–111 (988 GHz) lare he FWZf thmich YSOs and from ats ber of heir severan cinaiernigirmshopetheo entexplore lis Ces alastins C 0 p rmsverag(G10.47+0.03rase of ied ialinweqhe kineofiased balaspumpoad dleanwitfrose ora higie,mrietedbserve hipure le linh-mass e blue SED ourcearticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R39">Mottrar Tak et al. 2013).. The)refovetan rn ing adm loggfnfirmspecl blue FWZoffrose ora higie,mentirmvaryw-mahed anore ine deco s for inebroad d are liSucn conap, w thswad ppendiey/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jom et al. (2014).

isWZesfinawith the abserve hins and the FWa plass 0 pr, which arn -up nR53">San Jo17 cGonzález-Alfe Fo014).

iomponuiesce broadeneede of Cg the cartss="simple-math">2O 31 a7">7

)Th t is t bottlou with the abservhe nis (4sacrossnal . < thns and the FWa pvibrt thee, ter linnmoleculcsasucn cs HCs="simple-math">2 (1097 GHzN ass HCNn(nR53">San Jo74 cWyr tski13).1999> San Jo49 cRolffs014) th1s pictuWinexplore l o that FWZhed anore ese ratios cl blue FWZss Citfrose ora higie,mld bclasss="simple-math">2O 3Lmiddle<~52 GHz) ms="simple-math">1202O 11d 5CO 12CO middle<~52 GHz) ms="simple-math">1212CO ii 88 GHz)d are a. Md anderailty ofvpnifg cie,mentneede of Cas(see nul oe at ose ge both willt inhedcusmi lidied asa href="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#S5">2.318">4.2

3.26 class4. Dedcusmhe 3.27 class4.1. Dedet al.leflow calonditions2O and CO could bCO ane the he fourthTs Cn cl rn Fig. 2.39 c3

ioat thebclescss="simple-math">2O and CO coulpprelaa hramlayers in phystions oame for fne dtmineoFWmacaCr somenThIt esA wwhe higthe> ishowsnfirmspecb>2middleJ>) v<&5middleJ>) v88 GHz) os="simple-math">middle<5&pan804; /i>J>) v<–9 a)ss="simple-math">12CO middleJ>) v88 GHz) aos="simple-math">middleJ>) v&pan805;–9 a)ss="simple-math">12CO San Jo67 ck etK mpen13). <09averagarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan68"> th0> San Jo41">Nicw-i13). Th0> Santan 2re et al. 2013), th aver"InR53">San Jo60/spafed 013). Th3aver"InR53">San Jo16 cGoicoechea13), th aver"InR5icles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jo76 cYıldız13). Th3aver"InR5icles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan 0re et José-Garcí013). Th3aver)tureesca/foon rn Fig. 1 a8">8

ipl etcrhei fant >LCO Santang0re et José-Garcí013). Th3averagarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan 1"> th5) wi) pottlyrn Fig. 2middleJ>) v88 GHz)s="simple-math">12CO San Jo46 cRaga 0.105 Cet ó.1997aver)tureesh along the outflow ca ayWHMtclosthebcoow cavity, the line h autedhavGaerof fvlectra 1 afor a gi f="/ef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.14upC.1s piiomponuiesciclastineoH11 (988 GHz) behanemlayers innt ositys="simple-math">middlebol can be claZI ass="simple-math">2O and CO could berofis="simple-math">middleJ>) v88 GHz)s="simple-math">12CO 11 (988 GHz) h-mWZI sitionalso p( ore e12CO σ–9 and 12CO σ–9 and 2O 302–111 (988 GHz) he FWZton of C.111ined neled i02–111 (988 GHz) someyratios calent wittue abservomponent,oe nsitiontd bs="simple-math">12CO 11 (988 GHz) f thsourss="simple-math">middleJ>) v88 GHz)s="simple-math">12CO 2O 31 a24upC.1s pictuFdied amspan classomeyratios calculatte at ose wodstheeeslent wittue aton of 12CO σ–9 and 12CO σ–9 and m low- rinmair lransitio.ire isiaa hr ttrahebcoowfirmloulessefan clas counterparts (averaged sh rrts="simple-math">12CO σ–9 and Santan76 cYıldız13). Th3aver)shat theoggfnfirmspecs for ine vers ose o lly-warmperthe o pmiddleJ>) v88 GHz) laoalso , e.="/a="simple-math">12CO σᡃ1middleEspansub>O 3//i>kspansub>), =#758211;9 a K),u with the abservwfirmloulesseat.raf-e blue onent poe probin(e.="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santangelo et al. 2013), the FWZI. e of nefol, teflowe willthedcusm wodsopetheosw-maexpl thstinsne e bothmSantang6 cS äubor i). <07s pictureeshtrtfloUVmra higie,mwlatedphi2O 322.4Ve vor i). Th/ Acinaiernigirmshopetheo ental . < th Finfacconfirmspecp whichelow- pnvironm inMtctrYSOs and from aose d anturbu< in heir r ir linosits counterparts (averaged (f="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jo21">Hverin13), th aver"InR5icles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jog0re et José-Garcí013). Th3averagarticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santan 1"> th5) wivetan 1 a8">8

>ThOity, thsychemsa hthe hturbu< in moing tsa coow cahtruspule,ppemiflow cavity, the line wlined crossr lmoing tsclatedphepag clat stthe ophystions oame forMtctra sep whichelow- sychemasucn cs ss Cndrr the lvity, teflomaced byase of ied ialinss C aced by ine d clas oame forMtmashhavGaamYSOs erv. a hrmixoggfandhw cahehosegie,mese ratios cndrr the ltan r along maced by vencertaintvity, the line wlinewlateded bbe-and leorlagdelthesity tonf thss Class 0 pr, which ar. Sinartaintturbu< in moing tsa Class 0 pr, which artarcaweakpeurceewfayers in layWHMt wittitutiflow cae line wlinedremesete odefthe . tuo,mspecl st>11inedsmiddleJ>) v88 GHz) s. This frraremesete odayers inisity t cross pne the sh-mlaos="simple-math">σ–9 and 11 (988 GHz) gh-massts="simple-math">12CO σ–9 and 2O 3

Line luminCa/foon pl etcrheoggfathopetheo bservant >middleJ>) v88 GHz)s="simple-math">12CO middleJ>) v88 GHz) s. This frinlouo that d crFWZss Chrofis="simple-math">middleJ>) v88 GHz) also pof d dtururbu< in moing t pottlyrn Fig.

Open with DEXTER

Independenhe, d n,mwt ckedrulcavit ofah YSOs and from apotte, dogs (4rinoth- 0 protostaIr, which arn fan lso see tyosityre characlott arrthos duebcoof the med osnd San Jom0reKrh thesdi 4), th aver"InR5icles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jom et al. (2014) the aver. Thehsources (for moreu withimiedhs rrta anclostrbcoow calass 0 protostarsd the rdertaethsrhe ev stage,aryt ttge HM charae higσMspansub> (752 GHz)/s="simple-math">σMspansub> (752 GHz)-w rees="simple-math">νgt;Santang1re et José-Garcí013). Th5 aver. M0 p rmsveragarrtaine l logosent vcass Cotostarsg 3.28 class4.2. Eer lt thes causing line profil logosent thathe fourthAsnhedcusmi la href="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#S5">2.31.

m low- hose sourtee YSOs and from att esAdispanbottf Cg the cartw cavr the FW are he FWoe pa/ful forlagr ir linv sveflow cass="simple-math">2O 302–202 (752 GHz)y are (ata (m low- model. Sinarts for ier lt thesesA witlativeirms arh mperae ou (articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santanm et al. 2014), the aver,wof tvthe opl ucts cahopetheo entuiescf thss C ajrrint vcass Csources (for moreue tyosits mashbutpumpedhdleoffrose ora higie,n amthece pr, wb> yA withere to itsgh-madth eintand high-ts and the rdduebcooethos l logoseniesAshose sourcecabest-e b per lt thes causing ttlom the lis Cos Csources (for moraG10.47+0.03assonCos Cit thsre iFWZayra higie,mrietedlyquirehveryhsoursdativeiar,enderve uiescs for ine vers h autedesfin"LTE,ped fv withimief="/d are a. Noeir Fa (ource velgrir ssonerinra higivecpumpoad wt ckedrulcavit ofah YSOs d aver sousles ackedr the cartw cavr the FW luminosityhe FWo pa ofgeare aspo H yAhavGaam wamlex geminosymdth eitlaectrle mese it the spoG10.47+0.03,mgottlnZIeacooharbr m mbotis. Tor morehaencertaint/i>HWHMchel ol02–202 (752 GHz)yf are probtrIuetd the eurat>m low- gasah mperae ou forClass ediaprofile arrom ats with the abserve hige bots rom the liurcePACSfns and the F-wmore eFWZIva thosef="/CO golt theah mperae ou forClass ediaprofile ard the re(articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San Jo25upK ark2013) Th4aaver>Th/ sec2"> 3.29 class4.3. Clg teacrobinosityeolminostcgl logosenthe fourthheaddi/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.1ipl etcrhei fWZI roligie,mese ratios cl logosenies h-mWZI sitionalso pt cross eolminostcgl logosent h-mWZI or morehiurcelass coohrofile a pa of"nprsrowseavity th Finlog-logtho ine thatehiurce0.76 coo0.94"/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santang0re et José-Garcí013).. The)refo ppendiat>m low- roligie,mis Cos Care s (4hrofis="simple-math">middleJ>) v88 GHz) CO iswhipologtalso , sticalnvitaspo H2.4Benz13).. Th5, Ap theix D) σrspansub> (752 GHz)-wsh rrtaintlare beosare vptined nethick"(broamassts="simple-math">12 (Pn>X GHz) hhwhisph rr) d cross h mperae ousat ofah g <="simple-matnabelleq">(1)>

Line p>LinIt ckedesf WZIeaofah s="simple-math">σrspansub> (752 GHz)yin insgrerve neeous="simple-mat 12 (Pearson certaint0.6may trac0.82e that.ire isiaaple. Ilyb with the abserve hieavity fe0.76 vr the FWis Cstheeeslsucn cs HCOs="simple-math">12CO σ&6211;1San Jo4">Benz13). Th5 aver. / ThesAanalysloulmautedholcrtee lnytmoleculcsan lare nfirmlouvptined nethick"d crs ir line vers ose o lprimoselageurce velnd cavitm12CO σ–9 and San Jog0re et José-Garcí013).. The)refo-wmore e reelomvoluis L12CO σ–9 and mgnetweeor fnacc luminosityine vers osare ine dw cavity, thgSan JTfor a gi lWZI forirmspecfnacc luminopnvcavityine versmlougm low- roligie,mcautedheollrholcuralbe b bservexo ayin ete oduebcoow caare uthe sertvity, the ttribu ie,mis Ce thre blue p/ Thassenut thesesAly-hei2O 3San Jom et al. 2014), the avevetan Tef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R50">San JTfor a girase of ied ialinaintlare l logosent lmautedho inebserve hitotby le ardansitio.iree (swept-up) vity, thmase o pme mure liurcelasss="simple-math">middleJ>) v88 GHz) laoalso dhas in abppendins and the ed netodho ineeous="simple-mat Santan73">Wu i). <05 aver. If wttedm le nfirmspeclure roligie,mholconf thss Ch along the sh rrtss="simple-math">2O 3middlebol can be cl, es acautedimogare nfirmare s (4faccoHMt witpirehcoogivGaameavitypo H2.42.51.

San JTfor a gi ou a lWZI forirmspecfnacc luminos for ine vers eurce velnd cavit ith lumiehstrtfllageurcelass coohrofile arhich are iurce0% 3.20 class4.4AsFurceGalacc cw-maexo agalacc cwhich arhe fourtharticles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#R53">Santang0re et José-Garcí013).. The)refo ppendiorirmspecclg teacrobmese ratios clogre thms h-mWZI s="simple-math">12CO σ–9 and Lbol can be claZI aWZI WISHnYSOs. hetedbWatios yaexothe crossir analysloutohit thda anYSOs. FWZpeo agalacc cwhich ar. Si low- n,mwt ofvpnifg ce easaint>mgnetweeor clg teacrobmme mure lese ratios clogre thm h-mWZI sitiona logoseniesass="simple-math">σbolO), Lbol can be cla wiroauesaertaintd arm FWZpeo agalacc cwhich ar. /

Line luminSure tonef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F1">1 a3 c3

i-up et the spoaintlare l logosent vr the FWis Csaectrlepeo agalacc cwhich arl(ngles eiam los)blaken ourceart3">San Jo75 cYaflon).. The)refom

Open with DEXTER

Independenheaddi/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.1σbolO), San Jo75 cYaflon).. The)refom2O 302–102 (1097 GHz s. This frresA wi> yAber of heir r hieavity om the l withimiefloiy shr GaWISHnYSOs. .irehe Lbol can be cla isanphtoise lis Clinewitionalso pt cross eavitybeosare severuvencertainty (see 12CO σ–9 and San Jog0re et José-Garcí013).. The)refo. Asdhe nis ( neledcusmi la href="/4.3 h-mWZescpapsource is t botthat the quiesciclassourss="simple-math">middleJ>) v88 GHz) laosionmer linns for s. This frinckedesfusty tonaef acer h-minheehgaoe >m low- rinHCNn(nR53">San Jo14 cGao 0.105 Solmifrr2015aaver,nR53">San Jo15 cb) wi) pndiorirmspecffhos-law t ofx doesded bbeosarhsof lthesrooee YSOsor ier lt theso are probi.iI ofee,eart3">San Jo34 cLiu13).. Th5)a gi ou a lWZI uiescf ths="simple-math">12CO σ–9 and Lbol can be cla>R="simple-math">12CO Lbol can be cl. Regredlul oe at ohenderlyw-maphystions char,e velfacconfirmspecs thadth eolminostcgl logoseniarlpottstrtfllagclg teacty tline psucn cuvedne that FWZs="simple-math">Lbol can be clavalu ouiescsitiontd b hr-s="simple-math">middleJ>) v88 GHz) laosottgoodod crrolabNGC leonef acer oe ach atppemigie,Th/ Thasvr the FW are ratios calculatede at ohnk component (same forw reelentanthe lis Cos Ce r="/witionalso posityry) arew-mass Css="simple-math">02–111 (988 GHz) s. This frref="/ef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F1">1 a10reh0> San Jo75 cYaflon).. The)refom

2O 302–111 (988 GHz) (988 (middleEspansub> (988 GHz))ohe e thrs. This frr withimiefloiy shr Gae ttribu ie,mine deco ck component (same formSan Jo75 cYaflon).. The)refo,e velpink"d crlpaneyes coe showsosit shat theirorntoHii88 GHz)+ lod-AGN-lomvoluis thlaxies,aly) are spre. Tvelss="simple-math">02–202 (752 GHz)y(ata (middleEspansub> (9//i>kspansub>), =#137211;9 a Kpt cross 3s="simple-math">02–102 (1097 GHz (1097 (middleEspansub> (9//i>kspansub>), =#249211;9 a K./
Open with DEXTER

IndependenSurpricw-g n,mtineata (2.318">4.2 middleEspansub> (9&pan818; 258211;9 and <01;K. Bsete ochanaccmiesac luminosityier lt thes causing ttlas d anss="simple-math">2O 3σbolO), Lbol can be cla(ef="/articles/aa/full_html/2016/01/aa25708-15/aa25708-15.html#F14">C.1Mtclostrbcooseverannfirmspecemgnetweeoue FWZss C teacrobme>2O 3 3.21">a gi5. Clt thsre sFne deco d alyslouraimer linnss="simple-math">2O and CO could berofis="simple-math">middleJ>) v88 GHz)s="simple-math">12CO 2O 302–111 (988 GHz),lss="simple-math">02–202 (752 GHz)yedia3s="simple-math">02–102 (1097 GHz osityre charactee lehe peaor moralott>m low- -up ho ing inyratios ca. Iuetd the eurceeirClectra dW are ratios calculateda anc ittue abservith lumefloinfse (ource velor moraomponent.irecsI ge bots oat thebclescos ceonditions2O 3S1li> eectsZI (SeHMs="simple-math">11 (988 GHz) chahat little HMe ratilass ediaprofile arrom audy of tss="simple-math">2O 312CO σ–9 and middlebol can be clAsFan iclasmoleculcs,Aaine ent>mgnetweeor in ete o hrspecoH11 (988 GHz) ed fvWZI sacrosdnl logosent itntaoH12CO S1li> Te isin ete ,tlylct. 12CO 2O 311 (988 GHz) we anc ithimiedm11 (988 GHz)m12CO σ–9 and middleJ>) v88 GHz) also )ats l st>11ined nelesprs in hosclesco acediey/s for itsw cank componentng thease of nee high-mWZI YSOs and from ,ctinslaos="simple-math">σ–9 and C.18

>Th/ li>S1li> Teassomeyratios calculatte as="simple-math">12CO σ–9 and C.112CO σᡃ12O 31insb witfaorwis Ciclaslass ediaprofile arrom aton of C.1middleJ>) v88 GHz)s="simple-math">12CO middleJ>) v>gt;–9 a)co aceeleep aswarmperlayWHMtctra sevity, the line chanaccmiesls S1li> Twodsopetheoswwe anp wposty tohexpl thstin he nis (o t botThThaspirsinhopetheo edm le forirmspecith lumidoUVmra higie,mthsprofile arrom aleaos s nsitionbeoup ed andspd bNGCphwhi-hedmocisity ir r ir llayWHMtctra see line wlineclostrbcoow cavity, the line siasefan claClass 0 pr, which ar. Acinaiernigirmshopetheo whe ousonhedcusmi -wsh rrtaintstrtflperturbu< icemthsprofile arch a-ppemiflogeare a,a hthe ediey/os Cvity, toe phepag claa coogayWHMtctra sevity, the line wlineidied asine dw cavity, thck comptan charaaAber of mixoggfrants C aced by ipemiflow ir llayWHMtsiasea Class 0 pr, which ar.irehe S1li> Teass for ier lt thesis Cos Csources throm a ishsarwfirmfayers in une decat.rnosits count dth eintand high-ts ants (averagedm2O 3S1li> A audy COurcecasogre thm h-mWZI ss="simple-math">2O 3Lbol can be cla th lumie,vwfire so dievisdw cavity, th(osnd/je (ource velor mor)nckedheluC aced by idied asine dw caor moralnd/oreleep asa coow cae line wlin, pndiorirmspeconent (soleflohtruspule,(d crssuons="simple-math">Ln>) v88 GHz) tan rs mor-lectra dWs="simple-math">LN>) v88 GHz))ats sevomrsbyasTe istWativalu ouiescrofipne vers en alwayselomvoluis m low- causing tt-up ed anl logou for morehkeep ed anthe otow ir l causing tas/ li>S1li> Teasclg teacrobmese ratios ctotby ss="simple-math">2O 3m low- rinmair le or each tfan claClass 0 pr, which arn -up tecsI gulatedfayerssine dw ir lme mure lis Ccla eintand high- ediaprofile arrom . tuo,miclassourss="simple-math">middleJ>) v88 GHz) laosionss="simple-math">2O 3S1/ul>/ Oectrln, despvtentsar(fayers icesaertaer lt the,e velp wpforie ohe eer linns for are ine vers ostt>m low- -Me ratilass ediaprofile arrom ,shat theoggfnfirma tifrrphystionsmechahism en a aborksertaintvity, t oe acich arlpline pcuvedne that FWZl logosentAshSOs pannisl ge su ie,mediaoideltnt imogargfrant acer oIndhruvedth="30%" dle">3FN9 class=p>CO mple-matne">e">uFdied aeoffpemigie, regrediflow caupdluis < 3FN10 class=>CO 2an>CO mple-matne">e">uHIPE esAaojoi3FN11 class=>CO 3an>CO mple-matne">e"> ://dexter.edpwww.iram.fr/IRAMFR/GILDAS/_blank">

Independ 3FN12 class=>CO 4an>CO mple-matne">e">uTpecemgnetweeoue FWZasclg teacrobmtee lehe peanumber h-miatarffig.sat crPe ar th cr tligie,mcadspan clasisle or each tasnhescrib San Jo36">M aresineon).. Th0)refomdepend Indh2c2"> 3ack classAclnZIledgm insTecaluw iartarcagsegi201w-mass Clnonyms (o ters epis Ccla witf usparm t crosorerve e nietoe -maSylnie Cabe tpis Ccla usi201wfeedback quiesceelpty tohi>2e ltan builtiey/aCcwitorthum h-miittitutarlp crsevomrsine dehostm inMtine daline pEu wpf, Canada t cross Un linnStactehenderaclaCleaderlhiptctrSRONaNashoflahe pIittitutamf thSpaceeR Fiarch, Go heflee,eT caNashoflahe pd crsilasmajorte ttribu ie,Mtine dGtan0na,sFthnce t cross US.iCwitorthumsmemberrtarc: Canada: CSA,eU.Wacedloo;sFthnce: CESR, LAB, LERMA,eIRAM;dGtan0na: KOSMA,eMPIfR,eMPS; I tlird, NUI M ynocla; Itbya: ASI,eIFSI-INAF, Os and toheo Astrtfiveconhe Ah atri- INAF;aNashoflahe :rSRON,eTUD; Polahe: CAMK, CBK;hSpain: Ob and toheo AstrtnómeconNace eto (IGN),iCforroof Astrtbiologí01(CSIC-INTA). Sweden: ChalmerrtUevomrsine ctrTechnologyes="simple-math">νan722;ν.105νan722;Indh2c2"> 3 te classReers icesInd"insid="clttent"> Same="F3R1 classAh a,aH. G.,nSheph rd,nD.,nGuash, F.,ni). <07,sP which arta crPlah">MtV, 245Same="F

InSame="FSame="F3R2 classBachsiner, R.,nMa/fun-Pig.ado, J.,nTaflina,nM.,iCfrntiharo, J.,n0.105 Lazarcff, B. 1990, A0.105A,e231, 174Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1990A&A...231..174B/abst act">[NASACADS]3ass/p>

In

InSame="FSame="F3R3 classBeiclrd, R.,n0.105 Maeder, A). <01, A0.105A,e373, 190Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <01/215.h13485.h1348-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <01/215.h13485.h1348-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <01/215.h13485.h1348-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R4 classBenz, A).O.,nBruimier, S.,nvsimDishoees, E. F.,ni).

InSame="FSame="F3R5 classBeushof,aH., Schilka,aP., Sridhanae,eT. K.,ni). <02, A0.105A,e383, 892Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <02/09tmlh3133tmlh3133-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <02/09tmlh3133tmlh3133-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <02/09tmlh3133tmlh3133-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R6 classBeushof,aH., Churchsein, E. B.,nMcKef, C. F.,n0.105 Tae,eJ. C. <07,sP which arta crPlah">MtV, 165Same="F

InSame="FSame="F3R7 classBlttemps, S.,nAndra,aP., Tmiebey, S.,n0.105 Cabe t, S. 1996, A0.105A,e311, 858Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1996A&A...311..858B/abst act">[NASACADS]3ass/p>

In

InSame="FSame="F3R8 classCeccarclli, C.,nBacmann, A),nBoogert, A),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15081-10/ml15081-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15081-10/ml15081-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15081-10/ml15081-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R9 classCesao he, R.,nFclli, M., Churchsein, E.,n0.105 Walmsley, M). <05,nMa p rmshh atbirth:

InSame="FSame="F3R10 classChoi, M., Evsis, II, N. J.,n0.105 Jaffe,nD.eT. 1993, ApJ, 417,s624Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1993ApJ...417..624C/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/173341_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R11 classCodella, C.,nLefloch, B.,iCfccarclli, C.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14582-10/ml14582-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14582-10/ml14582-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14582-10/ml14582-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R12 classdl Goaauw,eT., Helmich, F.aP., Phsinips, T. G.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14698-10/ml14698-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14698-10/ml14698-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14698-10/ml14698-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R13 classDunham, M).M., Stutz, A).M., Allee,eL. E.,n4), the,sP which arta crPlah">MtVI, 195Same="F

InSame="FSame="F3R14 classGao, Y.,n0.105 Solmifr,aP. M). <04a, ApJS, 152,s63Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <04ApJS..152...63G/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/383003_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R15 classGao, Y.,n0.105 Solmifr,aP. M). <04b, ApJ, 606, 271Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <04ApJ...606..271G/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/382999_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R16 classGoicoechea,eJ. R.,iCfrntiharo, J.,nK arka, A),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/12/ml19912-12/ml19912-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/12/ml19912-12/ml19912-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/12/ml19912-12/ml19912-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R17 classGonzález-Alfwito, E.,nFiMcher, J.,nAalto, S.,n0.105 Falch d, N. the,sA0.105A,e567,sA91Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht3980-14/.ht3980-14-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht3980-14/.ht3980-14-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht3980-14/.ht3980-14-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R18 classGress,eJ. D., Evsis, II, N. J.,nJønk"nsss,eJ. K.,ni). <13, ApJ, 770, 123Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <13ApJ...770..123G/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/20152577X/770/2/123_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R19 classGriffin, M).J.,nAbenk"l, A),nAbreu, A),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14519-10/ml14519-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14519-10/ml14519-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14519-10/ml14519-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R20 classHerczeg, G. J.,nK arka, A),nBruimier, S.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/04/.h17914-11/.h17914-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/04/.h17914-11/.h17914-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/04/.h17914-11/.h17914-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R21">a giHerpin, F., Chavrería,eL.,nvsimderaTak, F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18413-11/.h18413-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18413-11/.h18413-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18413-11/.h18413-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R22 classJohnstfr,aK. G.,nSheph rd,nD. S.,nRobitasine, T. P.,n0.105 Wood, K).

InSame="FSame="F3R23 classKama, M., López-Sepulcra,aA),nDlmifik, C.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h19431-12/ml19431-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h19431-12/ml19431-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h19431-12/ml19431-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R24 classKaarka, A),nHerczeg, G. J.,nvsimDishoees, E. F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/.h <028-12/ml <028-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/.h <028-12/ml <028-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/.h <028-12/ml <028-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R25 classKaarka, A),nHerpin, F., Bruimier, S.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/02/ml 1954-13/ml 1954-13-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/02/ml 1954-13/ml 1954-13-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/02/ml 1954-13/ml 1954-13-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R26 classKaarka, A),nKrist"nsss,eL. E.,nvsimDishoees, E. F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4166-14/.ht4166-14-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4166-14/.ht4166-14-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4166-14/.ht4166-14-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R27 classKaźmierczak-Baied l, M., vsimderaTak, F. F. S., Helmich, F.aP., 4), the,sA0.105A,e567,sA53Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht2819-135.ht2819-13-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht2819-135.ht2819-13-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/075.ht2819-135.ht2819-13-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R28 classKrist"nsss,eL. E.,nVis an, R.,nvsimDishoees, E. F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15100-10/ml15100-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15100-10/ml15100-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/13tml15100-10/ml15100-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R29 classKrist"nsss,eL. E.,nvsimDishoees, E. F.,nTaflina,nM.,ii). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/075.h16975-11/.h16975-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/075.h16975-11/.h16975-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/075.h16975-11/.h16975-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R30 classKrist"nsss,eL. E.,nvsimDishoees, E. F.,nBergin, E. A),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18146-11/.h18146-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18146-11/.h18146-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/06/.h18146-11/.h18146-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R31 classKrist"nsss,eL. E.,nvsimDishoees, E. F.,nBenz, A).O.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1619-135.ht1619-13-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1619-135.ht1619-13-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1619-135.ht1619-13-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R32 classLada, C. J.,n0.105 Kylafis, N. D. 1999, NATO Advhnced Sg/appl Iittitutarl(ASI) SereeslC,e540, T caOrigintctrSh arta crPlah">ary Syst"msSame="F

InSame="FSame="F3R33 classLinke, R. A),nGoldsmish, P. F.,nWannian, P. G.,nWilsfr,aR. W.,n0.105 Penzias, A).A. 1977, ApJ, 2he,s50Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1977ApJ...2he...50L/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/155229_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R34 classLiu,nD.,nGao, Y.,nIsaak, K.,ni). <15, ApJ, 8h0, L14Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <15ApJ...8h0L..14L/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/ <41-8205/8h0/2/L14> [Cine Ree]3ass/p>

In

InSame="FSame="F3R35 classManoj,aP., Watsfr,aD).M., Neufeld,nD. A.,ni). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <13ApJ...763...83M/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/20152577X/763/2/83_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R36 classMaaresine, M).G., vsimderaTak, F. F. S., Herpin, F., 0.105 Jacq, T. ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/.h13557-09/ml13557-09-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/.h13557-09/ml13557-09-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/.h13557-09/ml13557-09-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R37 classMott am,eJ. C., Hoare, M).G., Davees, B.,ii). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <11ApJ...730L..33M/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/ <41-8205/730/2/L33_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R38 classMott am,eJ. C., vsimDishoees, E. F.,nSchmalzl,nM.,ii). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/10/ml21828-13/ml21828-13-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/10/ml21828-13/ml21828-13-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/10/ml21828-13/ml21828-13-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R39 classMott am,eJ. C., Krist"nsss,eL. E.,nvsimDishoees, E. F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4267-14/.ht4267-14-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4267-14/.ht4267-14-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/12/ml 4267-14/.ht4267-14-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R40 classNeufeld,nD. A.,nGusdorf, A),nGüst"n, R.,ni). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <14ApJ...781.-632N/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/20152577X/781/2/102_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R41 classNisihe, B.,nBenedettihe, M., Codella, C.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14603-10/ml14603-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14603-10/ml14603-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14603-10/ml14603-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R42 classOtt, S.

InSame="FSame="F3R43 classPlina,nF., 0.105 Stahler, S. W. 1993, ApJ, 418, 414Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1993ApJ...418..414P/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/173402_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R44 classPilbratt, G.eL.,nRiedinger, J. R.,nPe-mvok"l, T.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14759-10/ml14759-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14759-10/ml14759-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14759-10/ml14759-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R45 classPoglitsch, A., Waelkeis, C.,nGeis, N.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14535-10/ml14535-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14535-10/ml14535-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14535-10/ml14535-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R46 classRaga, A) C.,n0.105 Cantó, J. 1997, inrIAU Symp. 178,nid. E. F.nvsimDishoees, 89Same="F

InSame="FSame="F3R47 classRaga, A) C.,nCabrit, S.,n0.105 Canto, J. 1995,nMNRAS, 273, 422Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1995MNRAS.273..422R/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6393/mnras/ 73.2.422_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R48 classRoelfsema, P. R.,nHelmich, F.aP., Teyssian, D),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/ml15120-10/ml15120-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/ml15120-10/ml15120-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/ml15120-10/ml15120-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R49 classRolffs, R.,nSchilke, P., Wyrowski, F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/05/.h16544-11/.h16544-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/05/.h16544-11/.h16544-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <11/05/.h16544-11/.h16544-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R50 classSsimJosé-García,eI.,nMott am,eJ. C., Krist"nsss,eL. E.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/05/.h20472-12/ml <472-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/05/.h20472-12/ml <472-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/05/.h20472-12/ml <472-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R51 classSsimJosé-García,eI.,nMott am,eJ. C., vsimDishoees, E. F.,ni).

InSame="FSame="F3R52 classSsitangelo,.G., Nisihe, B.,nGiannihe, T),ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/02/ml18113-11/.h18113-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/02/ml18113-11/.h18113-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/02/ml18113-11/.h18113-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R53 classSsitangelo,.G., Nisihe, B.,nAntoniucci, S.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1674-13/ml 1674-13-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1674-13/ml 1674-13-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/09/ml 1674-13/ml 1674-13-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R54 classSsitangelo,.G., Nisihe, B.,nCodella, C.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/085.h24034-14/.ht4034-14-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/085.h24034-14/.ht4034-14-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <14/085.h24034-14/.ht4034-14-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R55 classSheph rd,nD. 2003, inrGalacfulrSh a Formation Acine rspecStellar Me-m Spectrum,nids. J).M. De Buizan, 0.105 N. S. vsimderaBliek, ASP Conf. Ser.,n287,s333Same="F

InSame="FSame="F3R56 classStäuban, P.,nBenz, A).O.,nJønk"nsss,eJ. K.,ni). <07,sA0.105A,e466, 977Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/185.h5762-06/.h5762-06-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/185.h5762-06/.h5762-06-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/185.h5762-06/.h5762-06-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R57 classSu, Y.-N.,nLiu,nS.-Y., Chss,eH.-R.,n0.105 Tang, Y.-W). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <12ApJ...744L..26S/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/ <41-8205/744/2/L26> [Cine Ree]3ass/p>

In

InSame="FSame="F3R58 classSuulaninss,eA).N., Krist"nsss,eL. E.,nMott am,eJ. C., Fra an, H. J.,n0.105 vsimDishoees, E. F.. ://dexter.sedpui.adsabs.harvred.e u/#abs/ <14MNRAS.440.1844S/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6393/mnras/stu406> [Cine Ree]3ass/p>

In

InSame="FSame="F3R59 classTaflina,nM.,iSsitiago-García,eJ.,nHacar, A., 0.105 Bachillan, R. ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/ml15158-10/ml15158-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/ml15158-10/ml15158-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/14/ml15158-10/ml15158-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R60 classTaflina,nM.,iLiseau, R.,nNisihe, B.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/03/ml <422-12/ml <422-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/03/ml <422-12/ml <422-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/03/ml <422-12/ml <422-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R61 classvsimderaTak, F. F. S., vsimDishoees, E. F.,nEvsis, II, N. J.,nBakkan, E. J.,n0.105 Blake, G).A. 1999, ApJ, 522, 991Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1999ApJ...522..991V/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/307666> [Cine Ree]3ass/p>

In

InSame="FSame="F3R62 classvsimderaTak, F. F. S., vsimDishoees, E. F.,nEvsis, II, N. J.,n0.105 Blake, G).A. 2000, ApJ, 537, 283Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <00ApJ...537..283V/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/309011> [Cine Ree]3ass/p>

In

InSame="FSame="F3R63 classvsimderaTak, F. F. S., Blaes, J. H.,nSchöian, F.eL.,nJansss,eD. J.,n0.105 vsimDishoees, E. F.. <07,sA0.105A,e468, 627Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/23/ml6820-06/.h6820-06-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/23/ml6820-06/.h6820-06-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <07/23/ml6820-06/.h6820-06-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R64 classvsimderaTak, F. F. S., Chavrería,eL., Herpin, F., i). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/06/ml <976-12/ml <976-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/06/ml <976-12/ml <976-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/06/ml <976-12/ml <976-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R65 classvsimDishoees, E. F.,nKrist"nsss,eL. E.,nBenz, A).O.,ni). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <11PASP..123..138V/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/658676> [Cine Ree]3ass/p>

In

InSame="FSame="F3R66 classvsimDishoees, E. F.,nHerbst, E.,n0.105 Neufeld,nD. A.. ://dexter.sedpui.adsabs.harvred.e u/#abs/ <13ChRv..113.9043V/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6321/cr4003177_>[Cine Ree]3ass/p>

In://dexter.edpwww.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abst act&list_uids=t4261880_>[PubMed]3ass/p>

In

InSame="FSame="F3R67 classvsimKempss,eT. A.,nvsimDishoees, E. F.,nGüst"n, R.,ni). <09, A0.105A,e501, 633Same="F://dexter.sedpwww.aa cat.php?/full_html/abs/ <09/26/.h1 <13-09/ml1 <13-09-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <09/26/.h1 <13-09/ml1 <13-09-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <09/26/.h1 <13-09/ml1 <13-09-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R68 classvsimKempss,eT. A.,nKrist"nsss,eL. E.,nHerczeg, G).J.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14615-10/ml14615-10-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14615-10/ml14615-10-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <10/10/ml14615-10/ml14615-10-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R69 classvsimKempss,eT. A.,nLongmore, S).N., Johnstone, D),nPillae, T),n0.105 Fuente, A.. ://dexter.sedpui.adsabs.harvred.e u/#abs/ <12ApJ...751.-637V/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/20152577X/751/2/137_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R70 classVsimLoo, S.,nAshmore, I.,nCaselli, P.,nFaine, S. A..E).G., 0.105 H?/fquist, T. W. ://dexter.sedpui.adsabs.harvred.e u/#abs/ [NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6393/mnras/sts030_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R71 classVissan, R.,nKrist"nsss,eL. E.,nBruderer, S.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/.h17639-11/.h17639-11-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/.h17639-11/.h17639-11-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/01/.h17639-11/.h17639-11-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R72 classW.10fler, S. F.,nBruderer, S.,nKarska, A.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/ml19929-12/ml19929-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/ml19929-12/ml19929-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/04/ml19929-12/ml19929-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R73 classWu,eJ.,nEvsis, II, N. J.,nGao, Y.,ni). <05, ApJ, 635,nL173Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <05ApJ...635L.173W/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6386/499623_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R74 classWyrowski, F.,nSchilke, P., 0.105 Walmsley, C..M. 1999, A0.105A,e341, 882Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/1999A&A...341..882W/abst act">[NASACADS]3ass/p>

In

InSame="FSame="F3R75 classYang, C.,nGao, Y.,nOmont, A.,ni). ://dexter.sedpui.adsabs.harvred.e u/#abs/ <13ApJ...771L..24Y/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6388/ <41-8205/771/2/L24_>[Cine Ree]3ass/p>

In

InSame="FSame="F3R76 classYıldız, U. A.,nKrist"nsss,eL. E.,nvsimDishoees, E. F.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h20849-12/ml <849-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h20849-12/ml <849-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <13/085.h20849-12/ml <849-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R77 classZernick"l, A.,nSchilke, P., Schmiedeke, A.,ni). ://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/10/ml19803-12/ml19803-12-et="_>[NASACADS]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/10/ml19803-12/ml19803-12-et="_>[Cine Ree]3ass/p>

In://dexter.sedpwww.aa cat.php?/full_html/abs/ <12/10/ml19803-12/ml19803-12-et="_>[EDP Sg/appls]3ass/p>

In

InSame="FSame="F3R78 classZinneesan, H., 0.105 Yorke, H. W. <07,sARA0.105A,e45,n481Same="F://dexter.sedpui.adsabs.harvred.e u/#abs/ <07ARA0A..45..481Z/abst act">[NASACADS]3ass/p>

In://dexter.sedpdoit.php04-6146/annurev.astrt.44.051905.092549> [Cine Ree]3ass/p>

In

InSame="F 31">3app classAppendix A:namSpectra ofrspecexcited water binesTpecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan c, 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan cta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctspectra forrspecintermediate-ta crhigh-mass YSOsta crspecobservrtion number identificrtion aretpresented inrthis section (see Figs.esrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F11> A.1lass toesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F13> A.3lass a crTableesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#T6> A.1lass). Tpecbasictprope/fuesmderived fromrspese data,nsuch a rspecrms ofrspecspectra,es="simple-matimg-inbine climg srcs/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-eq35.png">sspan c, integrated int"nsity a crFWZI aretsummarised fromrTableesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#T7> A.2lass toesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#T9> A.4lass. Ihraddition,rspecresults fromrspe Gaussisimdecompositioncexplained inrSect.esrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#S7> 2.5lass aretshown inrTablesesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#T10> A.5lass toesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#T12> A.7lass.

Same="F3T6 classTableeA.1lapan class

Observrtion identificrtion numbers forrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan c, 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan cta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctbines ofrspecintermediate-ta crhigh-mass YSOs.

name="F

Same="F3T7 classTableeA.2lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass sourpls.

name="F

Same="F3T8 classTableeA.3lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass YSOs.

name="F

Same="F3T9 classTableeA.4lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass objects.

name="F

Same="F3T10 classTableeA.5lapan class

Gaussisimdecompositioncresults forrspecintermediate-mass objects.

name="F

Same="F3T11 classTableeA.6lapan class

Gaussisimdecompositioncresults forrspechigh-mass YSOs.

name="F

Same="F3T12 classTableeA.7lapan class

Gaussisimdecompositioncresults forrspechigh-mass YSOs (continurtion).

name="F

Same="F3F11 classFig.eA.1lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctspectra forrspecintermediate-mass YSOs (top)ta crhigh-mass sourpls (bottom). Tpecgreentbine represent rspecbaseline levelta crspecpink Gaussisimspecbroad velocity component.eAlltspectra havecbeentshifted toezero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=110.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

Same="F3F12 class
Fig.eA.2lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ctspectra forrspecintermediate-mass YSOs (top)ta crhigh-mass sourpls (bottom). Tpecgreentbine represent rspecbaseline levelta crspecpink Gaussisimspecbroad velocity component.eAlltspectra havecbeentshifted toezero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=120.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

Same="F3F13 class
Fig.eA.3lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctspectra forrspecintermediate-mass YSOs (top)ta crhigh-mass objects (bottom). Tpecgreentbine represent rspecbaseline levelta crspecpink Gaussisimspecbroad velocity component.eAlltspectra havecbeentshifted toezero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=130.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

3app classAppendix B:amSpecific sourplsTpeclow-mass Cle-m 0tprotoslans indicrted inrFig.esrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F2 c2lass aretcha acterised forrshowing bullet emission inrtheir water profil_h. Tpese already studied sourpls are: L1448-MM, NGC 1333 IRAS2A, BHR 71,nSer SMM1ta crL1157. Ihrspeccasemofrspeclow-mass Cle-m I object IRAS 12496, acspotrshock component significrntlymoffset fromrspe sourpl velocity is identified inrthe 988 GHz water bine inremission but inrabsorption inrthe otherrground-based transitionh. More information about spese objects a crspeir observrtions inesrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#R39">Mott amni).( <14)lass.

Tpecexcited water spectra ofrspecintermediate-mass YSO NGC 2071rshow a moffset component at around 35 km ss="simple-matsimple-math clsup>-1sspup>sspan ctfromrspe sourpl velocity, which couldcbe considered a racspotrshock

component, inrp?/fulular simEHV component.eThis sourpl is known forrbeing formed by several YSOs, which bine profil_ couldcbe spen composed by specemission ofrseveral sourpls and molelular outflows ( vsimKempssni). Finally,rspecbine profil_smofrspechigh-mass YSO G5.89-0.39 aretcomplex and composed by velocity componentstwith non-Gaussisimprofil_h. As forrNGC 2071,rthis region is crowded with several protoslans and enenk">ic outflows ( Suni). ).1993lass) Tpecleore, specinterpretation ofrspecemission shouldcgo tok">herrwith extra singl_-dish and interferometric observrtions.F

3app classAppendix C:amAdditional figuresSame="F3F14 class
Fig.eC.1lapan class

(Left-polumn figure)tDerived FWHMs="simple-matsimple-math clsub>bsspub>sspan ctofrspecGaussisimprofil_rfittedttoespeccavity shock component ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO bines (top-an el)ta racfunction ofrbolometric luminosity. Constrained FWHMs="simple-matsimple-math clsub>bsspub>sspan ctforrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 and s="simple-matsimple-math cli>J = 3sspan c–2 observrtions (middle-an el)tversus s="simple-matsimple-math cli>Lbolsspub>sspan c. Rrtioccallulated fromrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcFWHMs="simple-matsimple-math clsub>bsspub>sspan ctdivided by specFWHMs="simple-matsimple-math clsub>bsspub>sspan ctofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO bines (bottom-an el)ta racfunction ofrs="simple-matsimple-math cli>Lbolsspub>sspan c. (Right-polumn figure)tSleft- figure but plottedtversus specenvelope mass ofrspe sourpl,rs="simple-matsimple-math cli>Menvsspub>sspan c. Tpecblue plus symbols correspondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrspecintermediate-mass objects,rspecpink cine _srspechigh-mass YSOs forrwhich specs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 3sspan c–2 spectra arettakss,ea crspecred cine rsymbols spechigh-mass object forrwhich s="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 data aretavai"ablee(see ). Opentwith DEXTERlass name="F

Same="F3F15 class
Fig.eC.2lapan class

(Left-polumn)rFWZI ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct988 GHz (top an el), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct752 GHz (middle an el)ta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct1097 GHz (bottom an el)ttransitionhta racfunction ofrspecbolometric luminosity ofreach sourpl. (Right-polumn)tSleft-polumn but versus specenvelope mass ofreach YSO. Tpecblue plus symbols correspondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrsorspecintermediate-mass objectsea crspecred cine esrsorspechigh-mass YSOs. Tpeclow- and intermediate-mass objectsrwith detected EHV components aretsurrounded by arbox,ta rwell a rspechigh-mass YSO with triangular bine profil_s.rFWZI is callulated by binning specspectra sor3 km ss="simple-matsimple-math clsup>-1sspup>sspan c.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=150.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

Same="F3F16 class
Fig.eC.3lapan class

(Left-polumn)tRrtiocofrspecFWZI ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct988 GHz (top an el), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct752 GHz (middle an el)ta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct1097 GHz (bottom an el)ttransitionhta crspecFWZI ofrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcobservrtions a racfunction ofrspecbolometric luminosity. (Right-polumn)tSleft-polumn but versus specenvelope mass ofreach YSO. Tpeclow- and intermediate-mass sourpls with detected EHV components aretsurrounded by arbox,tand alsorspechigh-mass YSO with triangular bine profil_s.rBoth values ofrFWZI weretcallulated by binning specspectra sor3 km ss="simple-matsimple-math clsup>-1sspup>sspan c. Tpecsymbol and colour codl is specs3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=160.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

Same="F3F17 class
Fig.eC.4lapan class

S3lass but plottedta racfunction ofrspecenvelope mass ofrspe sourpl.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=170.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

Same="F3F18 class
Fig.eC.5lapan class

Line luminosity ofrspecbroad velocity component (emission fromrshockedtga ralong specoutflowccavity) versus specbolometric luminosity ofrspe sourpl. Tpecsymbol and colour codl is specs3lass. Tpecdashed blaes bine showsrspeclog-log correlation ofrspecluminosity measured forrspeccavity shock emission and s="simple-matsimple-math cli>Lbolsspub>sspan c.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=180.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass name="F

3tabs classAll TablesTablee1lapan class

Overview ofrspecmaintprope/fuesmofrspecobserved water binestwith HIFI.

Ihrspectextlass 3/div> 3divmple-matinset">Tablee2lapan class

Average fraction ofrspecintegrated int"nsity that spe">02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct(752 GHz), 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct(1097 GHz) and s="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 bines.

Ihrspectextlass 3/div> 3divmple-matinset">Tablee3lapan class

Averagedcrms valuemint0.27 km ss="simple-matsimple-math clsup>-1sspup>sspan ctbin and mean (dash) values ofrspecFWHMs="simple-matsimple-math clsub>bsspub>sspan cta crFWZI forrspecticle water binesta crspecs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 spectra forreach sub-typemofrYSO.

Ihrspectextlass 3/div> 3divmple-matinset">Tablee4lapan class

li>Top half: slope (s="simple-matsimple-math cli>mlapan c), intercept (s="simple-matsimple-math cli>nlapan c), a crPearson correlation coeffig/apt (s="simple-matsimple-math cli>rlapan c) ofrspecpower-lawrfitttoespeccorrelation betweentspeclogarithmtofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO binecluminosity a crspeclogarithmtofrspecbolometric luminosity (s="simple-matsimple-math cli>Lbolsspub>sspan c,rleft-polumns)ta crspeclogarithmtofrspecenvelope mass (s="simple-matsimple-math cli>Menvsspub>sspan c,rright-polumns). Bottom half: sMenvsspub>sspan c.

Ihrspectextlass 3/div> 3divmple-matinset">Tablee5lapan class

Averagedcvalues ofrHs="simple-matsimple-math clsub>2sspub>sspan cO binecint"nsity ratios forrspecshockedtga ralong specoutflowccavity (broad component), beam size ratios ofrsposettransitionhta crspecratios ofrspecopfulallyrthinta crspick solutionhtatrs="simple-matsimple-math cli>Texsspub> = 300sspan c K.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.1lapan class

Observrtion identificrtion numbers forrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan c, 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan cta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctbines ofrspecintermediate-ta crhigh-mass YSOs.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.2lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass sourpls.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.3lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass YSOs.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.4lapan class

Observed a crfittedtprope/fuesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctbine forrspecdetected int"rmediate-ta crhigh-mass objects.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.5lapan class

Gaussisimdecompositioncresults forrspecintermediate-mass objects.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.6lapan class

Gaussisimdecompositioncresults forrspechigh-mass YSOs.

Ihrspectextlass 3/div> 3divmple-matinset">TableeA.7lapan class

Gaussisimdecompositioncresults forrspechigh-mass YSOs (continurtion).

Ihrspectextlass 3/div> 3h2mple-matsec> 31">3figs classAll Figures
Fig.e1lapan class

Left figure: averagedca crnormalised spectrumccallulated forrspeclow-mass Cle-m 0t(LM0)tprotoslans, speclow-mass Cle-m I (LMI), intermediate-mass YSOs (IM)ta crhigh-mass objects (HM)tforrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct988 GHz (left an el), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct752 GHz (middle-left an el), 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct1097 GHz (middle-right an el)ttransitionhta crspecs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 (right an el)tspectra (see ). 11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan cthigh-mass profil_raretduersormethanolcemission. Right figure: Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan c, 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan cta cr3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctspectra plottedtincred,cbluema crpurplecrespectivelyrforrNGC 1333 IRAS4Bt(LM0), GSS 30 (LMI), NGC 2071r(IM)ta crW33A (HM). Tpechorizontaltbight greentbines inrboth figures representmspecbaseline level.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=10.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F1">Ihrspectextlass 3divmple-matinset">
Fig.e2lapan class

li>Top: FWZI ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz) emission line versus specbolometric luminosity. Middle: sJ = 10sspan c–9 and s="simple-matsimple-math cli>J = 3sspan c–2 observrtions. Bottom: rrtiocofrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcand Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctFWZI values a racfunction ofrs="simple-matsimple-math cli>Lbolsspub>sspan c. Tpecblue plus symbols correspondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrspecintermediate-mass objects,rspecpink cine _srspechigh-mass YSOs forrwhich specs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 3sspan c–2 spectra aretused,ca crspecred cine rsymbols spechigh-mass object forrwhich s="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 data aretavai"ablee(see ). 3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=20.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F2">Ihrspectextlass 3divmple-matinset">

Fig.e3lapan class

Line luminosity ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz) bine emission (s="simple-matsimple-math cli>toplapan c), specHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct(752 GHz) data (s="simple-matsimple-math cli>middlelapan c), and Hs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct(1097 GHz) spectra (s="simple-matsimple-math cli>bottomlapan c) versus specbolometric luminosity ofrspe sourpl. Tpecblue plus _srcorrespondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrspecintermediate-mass objectsca crspecred cine rsymbols spechigh-mass YSOs. Tpecsolid binecindicrtesrspeclinear correlation ofrspeclogarithmtofrspectotalcbinecluminosity,clog(s="simple-matsimple-math cli>LHlsub>2sspub>Osspub>sspan c), and log(s="simple-matsimple-math cli>Lbolsspub>sspan c). Tpecdashed bine showsrspeclog-log correlation ofrspecluminosity measured forrspecbroader Gaussisimvelocity component only (cavity shock emission;rs="simple-matsimple-math cli>Lbroad Hlsub>2sspub>Osspub>sspan c) and log(s="simple-matsimple-math cli>Lbolsspub>sspan c).

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=30.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F3">Ihrspectextlass 3divmple-matinset">
Fig.e4lapan class

li>Top an els: rrtiocofrspecintegrated int"nsituesmofrspec2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct(752 GHz) and 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz) water binestversus specbolometric luminosity ofrspe sourpl. Middle an els: rrtiocofrspecintegrated int"nsituesmofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct(1097 GHz) and 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz) spectra versus s="simple-matsimple-math cli>Lbolsspub>sspan c. Bottom an els: rrtiocofrspecintegrated int"nsituesmofrspec3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct(1097 GHz) and 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct(752 GHz) water emission lines a racfunction ofrs="simple-matsimple-math cli>Lbolsspub>sspan c. Tpecleft-polumn present rspecratios callulated considering specentirecbine profil_ca crspecright-polumn showsrspecrrtiocofrspecintegrated int"nsityccallulated forrspecbroad velocity component.eTpecvaluemofrspecratios with a crwithout correcting by specdifferent beam size factors aretindicrted by dashed bighter binesta crdarker dotrsymbols respectively. Bluembinesta crsymbols correspondttoespeclow-mass Cle-m 0tprotoslans, blaes toespeclow-mass Cle-m I, greenttoeintermediate-mass objectsca crred binesta crsymbols toehigh-mass YSOs. Tpecpurplecdashed-dottedthorizontaltbinesta crspecorangecdashed horizontaltbinestindicrte specopfulallyrthinta cropfulallyrthies bimits,rrespectively, callulated a suming LTEta crsimexcitation tempsraturemofr300 K. Tpeclinear correlation betweentspecdotrsymbols (ratios not beam corrected)ta crspeclogarithmtofrspecluminosity is shown by specdottedtblaes bines inrthe top an els.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=40.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F4">Ihrspectextlass 3divmple-matinset">
Fig.e5lapan class

AveragedcHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan c/2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctrrtioc(top an el) and Hs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan c/2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctbinecint"nsity ratio (bottom an el)ta racfunction ofroffset velocity forrspeclow-mass protoslans (LM; grey area fromrsrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#R39">Mott amni). <14lass), intermediate-mass objects (IM; greentbine a crssterisks),ca crspechigh-mass YSOs (HM; red bineca crcine _s). Tpecdashed greenta crred regionstindicrte speccallulated sta carcrdeviation ofrspecline ratio forreach velocity chan el.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=50.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F5">Ihrspectextlass 3divmple-matinset">
Fig.e6lapan class

S5lass but forrspecs="simple-matsimple-math clsup>12sspup>sspan cCOc10–9 (top an el) and 16–15 (bottom an el)ttransitionh.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=60.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F6">Ihrspectextlass 3divmple-matinset">
Fig.e7lapan class

s="simple-matsmallcaps">radexsspan ctresults forrspecaveragecline ratios forrspeccavity shock components a suming a kine>ic tempsraturemofrs="simple-matsimple-math cli>T = 300sspan c K. The top an els correspondsrsorspecintermediate-mass object NGC 7129 FIRS2 inrwhich noeinfrared radiation field ha rbeentincluded. The middle a crbottom an els showrspecresults forrspechigh-mass YSOs G04-47+0.03rwithout a crwith radiation field respectively. Forreach row,rthe left-ha crpn els showrspecbest-fitt(red cine ), spec1, 3 a cr5s="simple-matsimple-math cli>σlapan c confidence bimits (blue contours)tforra gridtincs="simple-matsimple-math cli>nHlsub>2sspub>sspub>sspan cta crs="simple-matsimple-math cli>NHlsub>2sspub>Osspub>sspan cca crspeccorresponding size ofrspecemitting region in AU (blaes dashed bines). Tpecmiddle an els showra spectralcbinecenenky distribution comparing specobserved a crbest-fittmodelrwith bluema crred symbols respectively. Finally,rspecright-ha crpn els presentmspecopfulalrdepth,rs="simple-matsimple-math cli>τlapan c,tofrspecbest-fittmodelrforreach Hs="simple-matsimple-math clsub>2sspub>sspan cO bine.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=70.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F7">Ihrspectextlass 3divmple-matinset">
Fig.e8lapan class

C?/foon illustrating a scenario with a simplified physulalrstructuretofrspecdifferent layers composing specoutflowccavity walltforra representativeclow-mass protoslan (LM; top an el) and forra high-mass YSO (HM; bottom an el). Tpecemitting area ofrspeclow-s="simple-matsimple-math cli>Jlapan cl="simple-matsimple-math clsup>12sspup>sspan cCOctransitionhtis shadedtincyellow,rthat ofrspecmid-s="simple-matsimple-math cli>Jlapan cctransitionhtis orangeca crofrspechigh-s="simple-matsimple-math cli>Jlapan ccbines inrred. Turbulent motionhtare represented with spiral symbols, specentrained material with swirlsta crspecexcited water emission istindicrted with bluembines overrspecred region.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=80.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F8">Ihrspectextlass 3divmple-matinset">
Fig.e9lapan class

S3lass but including specbinecluminosity observed forrseveral extragalactic sourpls (blaes diamonds)ttakss fromrsrt>3InR75 class).( 3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=90.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F9">Ihrspectextlass 3divmple-matinset">

Fig.e10lapan class

Line luminosity ofrspecwater transitionhrnormalised toespecluminosity ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct(988 GHz) bine a racfunction ofrspecupper enenky level (s="simple-matsimple-math cli>Eusspub>sspan c) ofreach transition considering only speccontribution fromrspeccavity shock component. Tpecsolid blue, blaes, greenta crred bines correspondsrsorspecaveragedcvalue ofrspecnormalised int"nsity forrspeclow-mass Cle-m 0, Cle-m I, intermediate-mass a crhigh-mass YSOs respectively. Tpecgreycdashed bine representsrspecaveragecvalues ofrspecsample presented incsrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#R75 cYangni).( iisspan c+mild-AGN-dominrted galaxies,rrespectively. Tpec2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct(752 GHz) bine ha rancs="simple-matsimple-math cli>Eusspub>/li>kB = 137lapan c K a crspec3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct(1097 GHz) ancs="simple-matsimple-math cli>Eusspub>/li>kB = 249lapan c K.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=100.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F10">Ihrspectextlass 3divmple-matinset">
Fig.eA.1lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ctspectra forrspecintermediate-mass YSOs (li>top)ta crhigh-mass sourpls (li>bottom). Tpecgreentbine representsrspecbaseline level a crspecpink Gaussisimspecbroad velocity component.eAll spectra havecbeentshifted sorzero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=110.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F11">Ihrspectextlass 3divmple-matinset">
Fig.eA.2lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ctspectra forrspecintermediate-mass YSOs (li>top)ta crhigh-mass sourpls (li>bottom). Tpecgreentbine representsrspecbaseline level a crspecpink Gaussisimspecbroad velocity component.eAll spectra havecbeentshifted sorzero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=120.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F12">Ihrspectextlass 3divmple-matinset">
Fig.eA.3lapan class

Hs="simple-matsimple-math clsub>2sspub>sspan cO 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ctspectra forrspecintermediate-mass YSOs (li>top)ta crhigh-mass objects (li>bottom). Tpecgreentbine representsrspecbaseline level a crspecpink Gaussisimspecbroad velocity component.eAll spectra havecbeentshifted sorzero velocity. Tpecnumbers indicrte wheretspecspectra havecbeentscaled forrgreater visibility.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=130.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F13">Ihrspectextlass 3divmple-matinset">
Fig.eC.1lapan class

(Left-polumn figure) Derived FWHMs="simple-matsimple-math clsub>bsspub>sspan ctofrspecGaussisimprofil_cfittedtsoespeccavity shock component ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO bines (li>top-pn el)ta racfunction ofrbolometric luminosity. Constrained FWHMs="simple-matsimple-math clsub>bsspub>sspan ctforrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 and s="simple-matsimple-math cli>J = 3sspan c–2 observrtions (middle-pn el)tversus s="simple-matsimple-math cli>Lbolsspub>sspan c. Ratio callulated fromrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcFWHMs="simple-matsimple-math clsub>bsspub>sspan ctdivided by specFWHMs="simple-matsimple-math clsub>bsspub>sspan ctofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO bines (li>bottom-pn el)ta racfunction ofrs="simple-matsimple-math cli>Lbolsspub>sspan c. (Right-polumn figure) Sleft- figure but plottedtversus specenvelope mass ofrspe sourpl,rs="simple-matsimple-math cli>Menvsspub>sspan c. Tpecblue plus symbols correspondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrspecintermediate-mass objects,rspecpink cine _srspechigh-mass YSOs forrwhich specs="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 3sspan c–2 spectra arettakss,ca crspecred cine rsymbols spechigh-mass object forrwhich s="simple-matsimple-math clsup>12sspup>sspan cCOcs="simple-matsimple-math cli>J = 10sspan c–9 data aretavai"ablee(see ). 2.5lass a crspese anr3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=140.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F14">Ihrspectextlass 3divmple-matinset">

Fig.eC.2lapan class

(Left-polumn) FWZI ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct988 GHz (top an el), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct752 GHz (middle an el) and 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct1097 GHz (bottom an el)ttransitionh a racfunction ofrspecbolometric luminosity ofreach sourpl. (Right-polumn) Sleft-polumn but versus specenvelope mass ofreach YSO. Tpecblue plus symbols correspondttoespeclow-mass Cle-m 0tprotoslans, specblaes triangl_srspeclow-mass Cle-m I, specgreentasterisksrsorspecintermediate-mass objectsca crspecred cine esrsorspechigh-mass YSOs. Tpeclow- and intermediate-mass objects with detected EHV components aretsurrounded by arbox,ta rwell a rspechigh-mass YSO with triangular bine profil_s. FWZI is callulated by binning specspectra sor3 km ss="simple-matsimple-math clsup>-1sspup>sspan c.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=150.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F15">Ihrspectextlass 3divmple-matinset">
Fig.eC.3lapan class

(Left-polumn) RrtiocofrspecFWZI ofrspecHs="simple-matsimple-math clsub>2sspub>sspan cO 2s="simple-matsimple-math clsub>02sspub>sspan c–1s="simple-matsimple-math clsub>11sspub>sspan ct988 GHz (top an el), 2s="simple-matsimple-math clsub>11sspub>sspan c–2s="simple-matsimple-math clsub>02sspub>sspan ct752 GHz (middle an el) and 3s="simple-matsimple-math clsub>12sspub>sspan c–3s="simple-matsimple-math clsub>03sspub>sspan ct1097 GHz (bottom an el)ttransitionh a crspecFWZI ofrspecs="simple-matsimple-math clsup>12sspup>sspan cCOcobservrtions a racfunction ofrspecbolometric luminosity. (Right-polumn) Sleft-polumn but versus specenvelope mass ofreach YSO. Tpeclow- and intermediate-mass sourpls with detected EHV components aretsurrounded by arbox,ta crslsorspechigh-mass YSO with triangular bine profil_s. Both values ofrFWZI weretcallulated by binning specspectra sor3 km ss="simple-matsimple-math clsup>-1sspup>sspan c. Tpecsymbolta crpolourrpode is specsame as inrFig.esrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F2 c2lass.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=160.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F16">Ihrspectextlass 3divmple-matinset">
Fig.eC.4lapan class

S3lass but plottedta racfunction ofrspecenvelope mass ofrspe sourpl.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=170.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F17">Ihrspectextlass 3divmple-matinset">
Fig.eC.5lapan class

Line luminosity ofrspecbroad velocity component (emission fromrshocked ga ralong specoutflowccavity) versus specbolometric luminosity ofrspe sourpl. Tpecsymbolta crpolourrpode is specsame as inrFig.esrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F3">3lass. Tpecdashed blaes bine showsrspeclog-log correlation ofrspecluminosity measured forrspeccavity shock emission and s="simple-matsimple-math cli>Lbolsspub>sspan c.

3td polpan ="2 clrticles/ter.edpdexter.s.org/applst.php?pplet.php?pdf_id=180.105DOI=04-6351/201525761/ <1525708_tlank">Opentwith DEXTERlass3td polpan ="2 mple-matin-txt csrticles/p?/full_html/full_et="/ <16/01/.h25708-15/.h25708-15-et="#F18">Ihrspectextlass 3/div> 3/div> 3divmid="metrics-tabs" data-doi="04-6351/201525761/ <1525708_tdata-s.or_cles/.h25708-15 c snavmple-mattoolbar c Current usagecmetricsAbout a/full_cmetricsReturn sora/full_ 3divmple-matan el_tdata-for="metrics-siq"> 3/div> 3divmple-matan el_tdata-for="metrics-alm">3/div> 3divmple-matan el_tdata-for="info">

Current usagecmetrics show cumulativeccount ofrA/full_cViewsr(full-text a/full_cviewsrincluding HTMLcviews, PDF and ePub downloads, according sorspecavai"ableedata) and Abstracts ViewsronmVision4Press platform.

Data correspondttoeusagecoimspecplateform after <15. Tpeccurrent usagecmetrics is avai"ablee48-96 hours after onbine publicrtion and is updated dai"ycoimwees days.

s="simple-matico ico-info">sspan c sdiv>

Initialrdownload ofrspecmetrics mayttaksracwhil_.

3/div> 3/div>