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ABSTRACT

Context. Response functions provide us with a quantitative measure of sensitivity of the emergent spectrum to perturbations in the
solar atmosphere and are thus the method of choice for interpreting spectropolarimetric observations. For the lines formed in the solar
chromosphere, it is necessary to compute these responses taking into account nonlocal thermodynamic equilibrium (NLTE) effects.
Aims. We show how to analytically compute the response of the level populations in NLTE to a change of a given physical quantity at a
given depth in the atmosphere. These responses are then used to compute opacity and emissivity responses, which are then propagated
to obtain the response of the emergent intensity.
Methods. Our method is based on the derivative of the rate equations, where we explicitly incorporate spatial coupling in the radia-
tive rate terms. After considering and collecting all interdependencies, the problem reduces to a linear system of equations with a
dimension equal to the product of the number of spatial points and the number of energy levels.
Results. We compare analytically computed response functions with those obtained using a finite difference approach and find very
good agreement. In addition, a more accurate way of propagating opacity and emissivity perturbations through the numerical solution
of the radiative transfer equation was developed.
Conclusions. This method allows for the fast evaluation of the response of the emergent spectrum to perturbations of a given quantity
at a given depth, and thus is a significant step towards more efficient NLTE inversions.
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1. Introduction
Response functions of spectral lines (Mein 1971; Beckers
& Milkey 1975; Landi Degl’Innocenti & Landi Degl’Innocenti
1977) describe the sensitivity of an emergent Stokes spectrum
to the perturbations of physical parameters as a function of
depth in the atmosphere (for a detailed study of the possible
diagnostics see Ruiz Cobo & del Toro Iniesta 1994). Although
they are useful in forward modeling, in order to propose and
analyze various diagnostics (e.g., Uitenbroek 2006) their main
strength and application is in derivative-based spectral line fit-
ting (in solar physics widely known as “inversion”; see, e.g.,
Ruiz Cobo & del Toro Iniesta 1992). Given the perturbation of
an atmospheric parameter (temperature, velocity, magnetic field,
etc.), the computation of the response function in practice re-
duces to the computation of the responses (derivatives with re-
spect to atmospheric parameters) of opacity and emissivity and
then propagating these responses using the formal solution of
radiative transfer equation. It is intuitively clear that finding the
responses of opacity and emissivity requires the responses of the
atomic and molecular number densities as well as responses of
the populations of individual levels.

In the approximation of local thermodynamical equilib-
rium (LTE), computing responses of level populations is rela-
tively straightforward (e.g., Ruiz Cobo & del Toro Iniesta 1992;
del Toro Iniesta 2003) as all the relevant number densities de-
pend only on local quantities. In addition, level populations
and their response can be computed analytically, using the
Saha-Boltzmann equation. LTE is a good approximation for the

spectral lines formed deep in the photosphere where transitions
between the levels are dominated by collisions. However, for
lines that are formed in the upper photosphere and the chromo-
sphere (Hα, Ca II infrared triplet, Ca II H&K, Mg h&k lines, to
name just a few), this approximation is far from valid as the tran-
sition rates are dominated by the radiation field. This introduces
both spatial and nonlinear coupling between the level popula-
tions, resulting in a NLTE problem. The solution of such prob-
lems is extensively discussed in the literature and probably the
best reference is a classical monograph by Mihalas (1978) (or
a recent re-issue by Hubeny & Mihalas 2014). For polarized ra-
diation, however, there are wealth of unsolved and interesting
problems; a detailed and comprehensive introduction is given in
Landi Degl’Innocenti & Landolfi (2004).

The response of a NLTE problem to atmospheric changes,
however, has not been studied in great detail. The first attempt,
by Socas-Navarro et al. (1998), was based on the fixed depar-
ture coefficients (FDC) approximation, which essentially com-
putes the NLTE response functions by scaling the LTE ones
with the departure coefficients (the ratio of the level popula-
tion in NLTE to that in LTE). In that paper, the authors find
it to be a rather crude approximation and instead resort to
computing the response functions numerically (i.e., using fi-
nite differences). In the papers by Socas-Navarro & Uitenbroek
(2004) and Uitenbroek (2006), response functions are com-
puted numerically. Also, in the NLTE inversion code NICOLE
(Socas-Navarro et al. 2015), responses – and thus the χ2 deriva-
tives to model parameters – are computed in a numerical way.
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In this paper we demonstrate how the response functions of
the level populations to atmospheric quantities can be computed
in an analytical way, at a significantly reduced computational
cost compared to finite differencing, from which it is straight-
forward to compute the response functions of the opacity and
emissivity. Given the perturbations of opacity and emissivity, we
show how to compute very precisely the resulting perturbations
of the intensity throughout the atmosphere. In Sect. 2 we out-
line the method for analytical computation of NLTE functions
and show the explicit derivation for a case of pure line transfer.
In Sect. 3 we compare analytically computed response functions
with those computed using finite differences and discuss the dis-
crepancies. Finally, we conclude by discussing possible applica-
tions of our approach and future steps.

2. Response functions

In the following, we will assume that the emergent radiation
is formed in a plane-parallel atmosphere represented by a dis-
crete set of points in a single dimension (1D) at which the values
of atmospheric parameters are given. The relevant atmospheric
parameters for the formation of spectral lines are temperature,
pressure, line-of-sight velocity, microturbulent velocity, and the
magnetic field. Given the values of these parameters, we can ob-
tain the opacity and the emissivity of the medium at each spatial
and spectral point, and in each direction. These then enter the ra-
diative transfer equation (RTE), which in the 1D axisymmetric,
time-independent, polarization-free case reads

µ
dI(z, µ, λ)

dz
= −χ(z, µ, λ)I(z, µ, λ) + η(z, µ, λ), (1)

where z is the geometrical coordinate along the surface normal
µ = cos θ, where θ is the angle with respect to the surface normal,
and χ and η are the unpolarized (i.e., scalar) opacity and emissiv-
ity, respectively. Given the boundary conditions, the solution of
the radiative transfer equation then yields the emergent intensity
spectrum, which is to be compared with or fitted to the observed
one. We note that the emergent intensity depends on the opacity
and emissivity throughout the whole atmosphere (i.e., the solu-
tion is nonlocal). This nonlocallity is explicitly seen from the
formal solution of radiative transfer equation

I0(µ, λ) =

∫ ∞

0
S (τλ, µ, λ)e−τλdτλ/µ, (2)

where S =
η(τλ,µ,λ)
χ(τλ,µ,λ) is the source function and τλ is monochro-

matic optical depth defined by dτλ = −χ(z, µ, λ)dz.
We define the response function of the emergent intensity to

the change of a given atmospheric quantity q at depth point k as

Rqk ≡
∂I0(µ, λ)
∂qk

, (3)

which is readily expressed in terms of the derivatives of the
emergent intensity to opacity and emissivity,

∂I0(µ, λ)
∂qk

=

ND∑
l

∂I0(µ, λ)
∂χl(µ, λ)

∂χl(µ, λ)
∂qk

+

ND∑
l

∂I0(µ, λ)
∂ηl(µ, λ)

∂ηl(µ, λ)
∂qk

, (4)

where ND is the number of depth points in the atmosphere. The
summation over l, the numerical equivalent of integration over
the entire atmosphere, stems from the observation that a pertur-
bation qk in point k in general changes the opacity and emissiv-
ity not only in point k, but in the whole atmosphere. In gen-
eral, ∂I0(µ,λ)

∂χl(µ,λ) and ∂I0(µ,λ)
∂ηl(µ,λ) depend on the exact scheme used to

solve the RTE, and we discuss this computation in more detail
in Appendix A. For the time being, however, we assume that
we are able to compute ∂I0

∂χl
and ∂I0

∂ηl
in some way (we omit an-

gle and wavelength dependence, which should be clear from the
context).

To evaluate Eq. (4), we require the derivatives of the opacity
and the emissivity everywhere with respect to quantity qk. For
the sake of simplicity, we restrict the discussion here to line pro-
cesses only, and relax this assumption later. In the case of pure
line transfer, we have

χl(µ, λ) =
hν
4π

(nl, jB ji − nl,iBi j)φ
i j
l (µ, λ), (5)

where i and j are the indices of the upper and lower levels of each
transition; nl,i denotes the number density of atoms in state i at
spatial point l; B ji and Bi j are Einstein coefficients of absorp-
tion and stimulated emission, respectively; and φi j

l (λ) is the line
absorption profile. Similarly,

ηl(µ, λ) =
hν
4π

nl,iAi jφ
i j
l (µ, λ), (6)

where Ai j is the Einstein coefficient of spontaneous emis-
sion. Here we have assumed complete frequency redistribution
(CRD), which is a good approximation for most spectral lines of
interest, with the exception of very strong lines, that are formed
very high in the atmosphere. Even for those lines, however, CRD
usually describes the line core very well.

The derivative of the opacity with respect to qk is then

∂χl(µ, λ)
∂qk

=
hν
4π

(nl, jB ji − nl,iBi j)
∂φ

i j
l (µ, λ)
∂qk

+
hν
4π

(
∂nl, jB ji

∂qk
−
∂nl,iBi j

∂qk

)
φ

i j
l (µ, λ). (7)

A similar expression can be written for the derivative of the emis-
sivity. We thus see that the derivative (response) of the opac-
ity/emissivity can be expressed through the derivatives of the
level populations and the derivative of local absorption profile.
The latter is determined by the temperature, microturbulent ve-
locity, and the number density of the collisional partners (neutral
hydrogen, electrons, etc.).

Although in the general problem, we can find the NLTE re-
sponses of electron density simultaneously with all other atomic
populations; if we assume that the electron density response can
be approximated by the LTE response, the calculation of the
derivative of the absorption profile becomes strictly local, i.e.,

∂φ
i j
l (µ, λ)
∂qk

= δlk
∂φ

i j
k (µ, λ)
∂qk

, (8)

so that the only remaining quantities to be computed are the
derivatives of the level populations. Because the approximation
of LTE does not hold, this is the most complicated part of the
computation.
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2.1. Responses of populations in NLTE

Where the approximation of LTE is accurate, the level popula-
tions are determined only by local quantities, and can be ob-
tained with relative ease. However, if the density is sufficiently
low, the approximation of LTE is not valid, and the level pop-
ulations are determined both by the local temperature and by
the nonlocal radiation field. Under such non-LTE (NLTE) con-
ditions, the level populations are governed by the population
evolution equation which, for the population of level i at depth
point l, reads

dnl,i

dt
=

∑
j

(nl, jTl, ji − nl,iTl,i j). (9)

This is a nonlinear and nonlocal set of coupled differential equa-
tions, which is notoriously difficult to solve. However, if the con-
ditions can be assumed stationary, dnl,i

dt = 0, then we can solve the
considerably friendlier statistical equilibrium equation∑

j

(nl, jTl, ji − nl,iTl,i j) = 0 (10)

instead. Here Ti j is total rate of transitions from level i to level j.
Generally, Ti j = Ci j + Ri j, where C stands for collisional and R
for radiative transitions.

Deep in the photosphere, the density is so high that colli-
sional rates dominate over the radiative ones and thus the approx-
imation of LTE may be used. However, the situation is reversed
in the chromosphere, with radiative transitions dominating over
collisions. This means that the populations of the energy levels
are no longer determined only by the temperature, but also by
the radiation field, and, since the radiation field in turn depends
on the emissivity and opacity, the radiation field thus effectively
depends on itself. Many spectral lines are very optically thin in
this region and this effect can be safely neglected, but for some
spectral lines that are sufficiently strong to be still optically thick
there, the populations must be calculated using Eq. (10), self-
consistently with the radiation field using Eq. (1).

At least from the theoretical point of view, this problem can
be considered “solved” mostly thanks to the application of the
“Accelerated Lambda Iteration” methods (for an insightful re-
view see Hubeny 2003). Here, we want to go one step further
and compute not only the populations, but also their responses
(derivatives). For brevity, we use the notation

Rlik ≡
∂nl,i

∂qk
(11)

and refer to it as “response functions of level populations”.
To compute them, we start by differentiating Eq. (10) with re-
spect to qk:∑

j

(
Rl jkTl, ji − RlikTl,i j + nl j

∂Tl, ji

∂qk
− nli

∂Tl, ji

∂qk

)
= 0. (12)

The system in Eq. (10) is undetermined, so the statistical equi-
librium equation for one of the levels is usually replaced with∑

j

nl j = Nl, (13)

which, after taking the derivative becomes∑
j

Rl jk =
∂Nl

∂qk
· (14)

Where Nl is the total number density of species in question. For
simplicity’s sake we will assume that this derivative is strictly
local and that it can be computed directly from the equations of
chemical equilibrium. To solve Eq. (12) for Rlik, we need the
derivative of the rates:
∂Tl, ji

∂qk
=
∂Cl, ji

∂qk
+
∂Rl, ji

∂qk
· (15)

If we neglect the radiative rates in both Eqs. (10) and 12
and solve for populations and population responses, we end
up with LTE values, however, in this specific case, it is ac-
tually easier to find level populations, as well as their re-
sponses, directly from the Saha-Boltzmann equations (see, e.g.,
Ruiz Cobo & del Toro Iniesta 1992).

If we account for the radiative rates in Eq. (10), but keep
only the collisional rates (and their derivatives) in Eq. (12), we
arrive at the FDC (fixed departure coefficients) approximation of
Socas-Navarro et al. (1998), which uses the approximation

Rlik = bl,iR
∗
lik (16)

for the population responses, where R∗lik denotes the LTE pop-
ulation response function and bl,i is the NLTE departure coeffi-
cient of each level. Since the dependence of the departure co-
efficient on qk is not taken into account, the nonlocal spatial
coupling is not present, and the responses obtained in this way
are therefore strictly local. While this makes the computations
much easier, it does not account for the most significant NLTE
effect, that of the nonlocality, which is usually most pronounced
in the upper more dilute layers of the atmosphere, and becomes
more important the finer the spatial grid is. This is probably
why Socas-Navarro et al. (1998) find poor agreement between
the FDC approximation and numerically computed responses in
the upper layers of their atmospheres.

Clearly, a fully consistent approach needs to account not only
for the correct radiative rates, but also for the response of those
radiative rates.

2.2. Derivative of radiative rates

The radiative rates we are interested in (bound-bound and
bound-free) are functionals of the specific intensity, and have the
form

Rl, ji ∝

∫ ∞

0

∫ 1

−1
Ψl,i jIlµ, λ dµdλ, (17)

where Ψl,i j is some weighting function (e.g., the profile function
in the case of pure line transfer). The derivative of the radiative
rates then becomes
∂Rl, ji

∂qk
∝

∫ ∞

0

∫ 1

−1

[
∂Ψl,i j

∂qk
Ilµ, λ + Ψl,i j

∂Ilµ, λ

∂qk

]
× dµdλ. (18)

Further expanding the derivative of the specific intensity, in a
similar fashion to Eq. (4), we get, omitting dependencies, which
should be clear from the context:
∂Il

∂qk
=

∑
l′

[
∂Il

∂χl′

∂χl′

∂qk
+
∂Il

∂ηl′

∂ηl′

∂qk

]
· (19)

Opacity and emissivity depend on all the populations of the rel-
evant species, but also explicitly on the atmospheric parameters,

∂χl′

∂qk
=
∂χl′

∂qk explicit
+

∑
i

∂χl′

∂nl′,i

∂nl′,i

∂qk
, (20)
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where the summation over i takes into account all the relevant
energy levels of all the species. A similar equation to Eq. (20)
can be written for emissivity. Starting from Eq. (20) and sub-
stituting back all the way to Eq. (12), we end up with a linear
system which couples all points in the atmosphere (because of
the radiative transfer) and all the atomic level populations (be-
cause of their influence on opacity and emissivity). Below we
give an explicit derivation for the case of pure line transfer and
in Sect. 3.2 we treat the atomic model which also involves radia-
tive bound-free and free-bound rates.

For pure line transfer, the radiative transition rates from
bound level i to bound level j, have the form

Rl,i j = Ai j + Bi jJl,i j, (21)

where Ai j ≡ 0 when i < j and Jl,i j is the scattering integral for
the transition i→ j at depth point l:

Jl,i j =
1
2

∫ ∞

−∞

φl,i j(λ)rλ dλ
∫ 1

−1
Il(µ, λ) dµ. (22)

Here, rλ is the ratio of the line opacity to the total opacity, which
is in this case identical to one. Taking the derivative of Eq. (22)
yields

∂Jl,i j

∂qk
=

1
2

∫ ∞

−∞

∫ 1

−1

(
∂Il(µ, λ)
∂qk

φl,i j(λ)

+ Il(µ, λ)
∂φl,i j

∂qk

)
dλ dµ, (23)

that naturally splits in two distinct terms. Because the second
term involves only derivatives of the line profile, which depends
strictly on local quantities, it can be computed with relative ease,
and will be referred to by

Φl,i j =
1
2

∫ ∞

−∞

∫ 1

−1
Il(µ, λ)

∂φl,i j

∂qk
dλ dµ. (24)

To evaluate the first term, we expand the derivatives of the local
intensity through the derivatives of opacity and emissivity,

∂Il(µ, λ)
∂qk

=
∑

l′

∑
i′

(
∂Il(µ, λ)
∂χ′l(µ, λ)

∂χ′l(µ, λ)
∂nl′,i′

+
∂Il(µ, λ)
∂η′l(µ, λ)

∂η′l(µ, λ)
∂nl′,i′

)
Rl′i′k

+
∑

l′

∑
i′

∑
i′′<i′

pl′,i′i′′ , (25)

where

pl′,i′i′′ =

(
∂Il(µ, λ)
∂χ′l(µ, λ)

∂χ′l(µ, λ)
∂φl′,i′i′′

+
∂Il(µ, λ)
∂η′l(µ, λ)

∂η′l(µ, λ)
∂φl′,i′i′′

)
×
∂φl′,i′i′′

∂qk
(26)

describes the influence of changes of the line profile in the tran-
sition i′i′′ at depth point l′ on the intensity at depth point l, so
that the response of the specific intensity to a change in qk can
thus be written in the simple form

∂Il(µ, λ)
∂qk

=
∑

l′

∑
i′

all′ii′Rl′i′k +
∑

l′

∑
i′

∑
i′′

pl′,i′i′′ . (27)

Substituting Eq. (27) back into Eq. (23), and integrating over
angles and wavelengths yields

∂Jl,i j

∂qk
=

∑
l′

(All′i jRl jk + All′iiRlik) +
∑

l′
Pl′,i j + Φl,i j, (28)

where A and P correspond to angle and wavelength integrated
quantities a and p, respectively. Substituting this back into
Eq. (12) yields for each state i and depth level l the equation∑

j

[Tl, jiRl jk − Tl,i jRlik + (nl, jB ji − nl,iBi j)

×
∑

l′
(All′i jRl jk + All′iiRlik)

=
∑

j

(
nl,i

∂Cl,i j

∂qk
− nl, j

∂Cl, ji

∂qk

)
+

∑
j

Φl,i j +
∑

j

∑
l′

Pl′,i j.

(29)

On the left-hand side of this equation, we find the level re-
sponses Rl jk, together with a number of coefficients that do not
depend on the quantity qk (i.e., temperature, velocity, magnetic
field ...) with respect to which we have taken the derivative. The
right-hand side contains all the other terms, including those that
are explicitly dependent on qk, but no terms that depend on Rl jk.

We can thus express Eq. (29) as a system of coupled linear
equations of the form

âx = b, (30)

where x are the level population responses Rl jk, and â describes
level interdependencies. This is a linear system of equations with
ND × NL unknowns, where ND is number of depth points and
NL is number of levels in the considered atom. Crucially, ma-
trix â does not depend on qk in any way, so it can be computed
once, decomposed or inverted, and then used to solve the re-
sponse to many different atmospheric quantities q at different
heights k efficiently and quickly.

The right-hand side, b, contains the (local) responses of the
atmospheric properties (collisional rates, profile functions, etc.)
to qk. In the case of pure line transfer, there are three
contributors:

– the derivative of the collisional rates, which is in first ap-
proximation strictly local (i.e., responds only to perturbation
in point l). Also, it is reasonable to assume that collisional
rates respond only on temperature and pressure;

– the derivative of the local line profile, which influences the
integration over wavelengths and angles to obtain the scat-
tering integral. This factor is local as well and depends prac-
tically on all the atmospheric parameters (temperature, pres-
sure, velocity, magnetic field);

– the derivative of line profiles at other points l′ (also strictly
local), which influences opacity and emissivity in points l′,
which then in turn influence intensity Il through the transfer
of radiation. This factor also depends on all the atmospheric
parameters.

In the general case, bound-free transitions must be considered in
the statistical equilibrium, and in special situations even overlap-
ping transitions, not to mention other contributors to opacity and
emissivity (electron and Rayleigh scattering, bound-free, free-
free, and H-opacity, etc.). A generalization to such conditions is
straightforward, and in principle only results in a number of extra
terms in Eq. (26) arising from additional terms in the expressions
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I. Milić and M. van Noort: Response functions in NLTE

for the opacity and emissivity. These terms, however, inevitably
introduce off-diagonal terms on the left-hand side that make it
intrinsically more difficult to invert. When such terms can be
treated in LTE, however, these terms appear on the right-hand
side instead, which makes them trivial to include. Such compli-
cations are, however, an integral part of the NLTE problem itself
and are not specific to the method presented here.

Electron density deserves special mention, as it is a quantity
which couples the chemical equilibrium and statistical equilib-
rium equations. If the electron density is assumed to be in LTE,
the response is easily computed explicitly and included in the
computations. A fully consistent approach would require find-
ing the analytical derivatives of both the equations of chemical
and statistical equilibrium. We postpone this discussion for the
moment. We note that using finite differences for computing re-
sponse functions automatically takes into account all NLTE ef-
fects on the responses of electron density.

2.3. Advantages of analytical response functions

The brute-force alternative to computing the response functions
analytically is to do it numerically, that is, to compute

Rqk ≈
I0(µ, λ; q − ∆qk/2) − I0(µ, λ; q + ∆qk/2)

∆qk
(31)

for a very small ∆qk, where each computation of I0 requires one
full solution of the NLTE problem. There are two major prob-
lems related to this approach.

1. If we want to compute the response to perturbations at all the
points, we need O(ND) NLTE solutions, which takes much
longer than solving the linear system from Eq. (29). If we
are somehow parameterizing our atmosphere using a reduced
number of parameters (as, for example, when using nodes in
depth-dependent inversions), this problem is mitigated some-
what, but it still requires approximately ten NLTE solutions,
compared to just one + the solution of the linear system for
the analytical approach.

2. The NLTE problem is highly nonlinear, and thus to obtain
precise response functions, ∆qk must be kept small. How-
ever, the change of the NLTE solution induced by ∆qk must
exceed the residual convergence error in the solution for the
derivative to be accurate. This means that the NLTE solu-
tions must be converged to a much higher precision than jus-
tified based solely on the estimated accuracy of the numerical
scheme or the convergence state of the inverted atmosphere,
a problem that does not affect the analytical method.

Although at first sight the first point seems to computationally
strongly favor the analytic method, the use of only a small num-
ber of nodes in most inversion codes seems to reduce this advan-
tage considerably, as thus far the method calculates the response
to qk, that is, a single quantity at a single height only. However,
an important consequence of the left-hand side of Eq. (29) not
depending in any way on qk is that it allows us to calculate the
combined response of different quantities at different heights by
adding up the right-hand side for each of them, and then solving
the linear system using the sum. This actually makes the method
particularly suitable for use in inversion codes, as the problem
that a perturbation of a parameter in a single node perturbs the
value of that parameter over an extended height range in the at-
mosphere can be easily incorporated at little extra cost.

As in the case of response functions in LTE, however, a clear
drawback of this method is the need to explicitly include any

and all sources of opacity and emissivity in the calculation of
the responses, and to follow their dependencies to the appropri-
ate level. Failure to do so can result in significant discrepancies
between the true response and calculated ones, which will not
be apparent unless an explicit comparison with a response cal-
culated using a finite difference approach is made.

3. Results

For demonstration purposes, we implemented the above proce-
dure in a computer code that solves the NLTE radiative trans-
fer problem using the MALI formalism of Rybicki & Hummer
(1991). We chose a short characteristics-based formal solver
which uses second-order Bezier splines for the interpolation
of the source function, as described by de la Cruz Rodríguez
& Piskunov (2013). While this choice of formal solver brings
much-needed accuracy and stability to the solution of the
NLTE problem, it causes some complication in the explicit com-
putation of ∂Il/∂χl′ and ∂Il/∂ηl′ , which we discuss in detail in
Appendix A.

Our main aim is to compare the response functions computed
with the analytical approach against those computed numerically
(i.e., using Eq. (31)). We start with a simple example and then
work our way up to more complicated ones.

3.1. Pure line transfer

3.1.1. Two-level atom

In the first example we consider a very simple model for the
formation of the Hα line in a semi-empirical FALC model of the
solar atmosphere (Fontenla et al. 1993). The line is modeled as
a two level atom, with levels corresponding to the second and
third energy level of hydrogen. We assume that the population
of the ionized state is fixed to the LTE value, which means that
the NLTE effects are only redistributing electrons between the
two energy levels of the line. Emissivity and opacity are due to
the line absorption and emission only. Here, we focus on the
responses of the level populations and the emergent intensity to
the temperature only, as our main aim is not to study the line
response in detail, but only to compare the responses computed
using the analytical approach with those obtained using the FDC
approximation, and those computed using finite differences. In
the following, we show “relative” responses, that is, the response
of a certain quantity divided by the quantity itself. To show the
response of the emergent intensity, we plot

R̄(hk, λ) =
R(hk, λ)

I0(λ)
· (32)

The response functions to temperature computed using the three
different approaches are shown in Fig. 1. For the numerical com-
putation we used a perturbation of 1 K and converged the NLTE
problem down to the greatest relative change in populations
of 10−8.

The line intensity response functions resemble those com-
puted by Socas-Navarro & Uitenbroek (2004) (who plot ab-
solute, normalized response functions, so negative responses
cannot be seen). We see that the FDC approximation (bottom
left) severely overestimates the response to temperature at
heights around 1500 km. The overestimation occurs because
these approximations are computed using the same assumptions
as for LTE response functions, that is, the populations respond
strictly locally and the response is governed by Saha-Boltzmann
statistics. In extreme examples of NLTE lines (such as Hα), this
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Fig. 1. Intensity response functions to temperature for a two-level atom line in FALC model atmosphere normalized with respect to the emergent
profile, given in units of 10−4. Top left: numerical (finite difference) computation of intensity responses; top right: responses computed analytically
using the method described in the paper; bottom left: responses computed using FDC approach; bottom right: relative differences, normalized with
respect to the maximum response, between analytical and numerical computations (in log scale).

is a very bad approximation as the level populations are pre-
dominantly determined by the radiation field coming from lower
layers. It can be seen that a response function computed ana-
lytically using the method described above (top right) is visually
indistinguishable from the one computed using finite differences.
The bottom right panel of Fig. 1 shows the difference between
the analytical and numerically computed response functions, di-
vided by maximum absolute value of the numerical response
function:

r(h, λ) =
R̄num(hk, λ) − R̄an(hk, λ)

max(|R̄num(hk, λ)|)
· (33)

Here r(h, λ) is on the order of 0.001 (0.1%) everywhere in the
atmosphere, both for this example and the two considered below.
This is a level of agreement which suggest that the analytical
response functions describe the line formation process not only
qualitatively, but also quantitatively with sufficient accuracy to
make use of them in an inversion code.

The time needed to set up, compute, and de-compose the
matrix on the left-hand side of Eq. (29) is, in our specific
implementation and for this specific example, smaller then
one full NLTE solution, whereas for a model described with

NP parameters, an order of NP full NLTE solutions are needed to
numerically compute the response to all the parameters. Clearly,
in this case, the use of analytically computed response functions
reduces the computing time significantly.

3.1.2. Multilevel atom

We, very briefly present some results obtained using a four-level
hydrogen-like atom. The atom consists of a ground level, which
is assumed to be in LTE, and three NLTE levels with atomic con-
stants corresponding to levels 2–4 of hydrogen. As before, we
only consider line processes, the difference with respect to the
previous example is thus only that the effects of nonlinearity are
now more pronounced as we are dealing with a multilevel atom.
Figure 2 shows the response function of the Hβ line, computed
as in the previous example, with a similar level of agreement
everywhere in the (λ, h) plane.

3.2. Calcium II 8542 line

The infrared triplet of singly ionized calcium around 850 nm are
among the most promising candidates for obtaining atmospheric
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I. Milić and M. van Noort: Response functions in NLTE

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
λ [Å]

0

500

1000

1500

2000

h
[k
m
]

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

1.5

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
λ [Å]

0

500

1000

1500

2000

h
[k
m
]

−0.6

−0.3

0.0

0.3

0.6

0.9

1.2

1.5

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
λ [Å]

0

500

1000

1500

2000

h
[k
m
]

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Fig. 2. Comparison between numerically (left) and analytically (middle) computed response functions to temperature for emergent intensity in
Hβ line, normalized with respect to emergent intensity, in units of 10−4. Right: absolute difference between the analytical and numerical approach,
normalized with respect to the maximum response.

diagnostics (see Quintero Noda et al. 2016, for an in-depth dis-
cussion of response function and diagnostic capabilities) in the
solar chromosphere. The most frequently used member of this
triplet, the line at 8542 Å, is one of the lines that is routinely in-
verted using the NLTE inversion code NICOLE, but the numer-
ical cost of calculating the response functions makes such inver-
sions very costly, a situation that has resulted in some authors
resorting to approximate approaches (Beck et al. 2015). We thus
investigate the potential of the analytical response functions for
use in inversion codes.

We consider a FALC atmospheric model, without magnetic
fields or velocities, and consider a CaII atomic model with
five levels, as in Quintero Noda et al. (2016). For simplicity, we
do not consider line asymmetry due to the presence of iso-
topes, but this effect should be straightforward to include. Al-
though we now also consider other sources of opacity, namely H-
bound-free and free-free opacity, electron scattering, Rayleigh
scattering on neutral hydrogen, and bound-free opacity of the
CaII atom, we simplify the problem somewhat by considering
the electron density to be in LTE.

As discussed in Sect. 2.2, we need to take into account all
the processes that contribute to the radiative rates, but also to the
opacity and emissivity. This means that Eq. (26) has to be modi-
fied to account for continuum processes. By accounting carefully
for the sources of opacity and emissivity and their derivatives,
both the left-hand side of Eq. (29), which describes the coupling
between all levels at all points in the atmosphere, and the right-
hand side can be appropriately modified and the level responses
can be obtained. This process is laborious but straightforward,
after which the corresponding opacity and emissivity responses
are readily computed and propagated to yield the response of the
emergent intensity.

Figure 3 shows the emergent line profile and response func-
tion to the temperature, computed with finite differencing and
analytically. The emergent profile is somewhat different from
the one shown in Quintero Noda et al. (2016), which could be
due to the absence of magnetic field in our atmospheric model
(the mentioned authors consider a 500 Gauss magnetic field), or
because of differences in the treatment of the collisional rates.
However, this difference is not critical here, as here we are
predominantly interested in the response and not in the accu-
racy of the physics. We see that the intensity response func-
tion computed with the analytical approach and finite-differences
are practically indistinguishable, and that their relative differ-
ences are fairly small. The response functions are not identical
to those in Quintero Noda et al. (2016); in particular, they lack
the negative “dip” very high in the atmosphere (see their Fig. 6).

However, this feature is not present in the response functions cal-
culated using either method, and thus points to differences in the
atmospheric model, rather than shortcomings in the calculation
of the response function itself.

4. Discussion and conclusions

In this paper we outline an analytical approach for the computa-
tion of the intensity response functions for lines formed in nonlo-
cal thermodynamic equilibrium (NLTE). We take the derivatives
of the rate equations analytically and then follow them through
to get a large linear system where the matrix on the left-hand
side describes the coupling between levels and points in the at-
mosphere (and hence has the dimension of NL × ND) and the
right-hand side describes “local” dependencies (derivatives of
the line profile, collisional rates, etc.). The left-hand side ma-
trix does not depend on the quantity with respect to which the
response is to be calculated, so it can be decomposed once and
then used to obtain responses to different model parameters at
different depths. Once responses of level populations are known,
we use them to compute appropriate responses of opacity and
emissivity, which are in turn propagated to get the response of
emergent line profile.

In this paper we have restricted ourselves to the scalar (i.e.,
polarization-free) case and to the response functions to tempera-
ture. We have considered three examples: a pure line transfer ex-
ample for a two- and four-level atom, and a five-level Ca II atom
where we focused on the response of Ca II 8542 line. For all the
cases considered we obtained excellent agreement between the
intensity response function computed using the finite-difference
approximation, and the new analytical approach.

Although a downside of the new method is that all interde-
pendencies of the statistical equilibrium must be explicitly taken
into account when calculating the derivatives, something that
must be carefully checked using finite differences, the advan-
tage of the analytical approach is that it is much faster. For our
specific implementation, it takes less time than one NLTE so-
lution, while a finite difference calculation of the same requires
O(ND) NLTE solutions where ND is number of depth points in
the atmosphere.

While this work has its own interesting applications from the
standpoint of theoretical radiative transfer, its main intended area
of application is that of NLTE inversions. Current state-of-the-art
codes use numerical response functions, which are time consum-
ing to calculate, since typically on the order of ten NLTE solu-
tions are needed for one set of derivatives, for each iterative step
in minimization procedure. The method presented here would
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Fig. 3. Intensity response functions to temperature for a 8542 Ca line in FALC model atmosphere, normalized with respect to the emergent profile,
given in units of 10−4. Top left: emergent line profile; top right: numerical (finite difference) computation of intensity responses; bottom left:
responses computed analytically using the method explained in the paper; bottom right: absolute differences between analytical and numerical
computations normalized to the maximum response (log scale).

require a computing time similar to that of one NLTE solution
and would thus offer an acceleration of one order of magnitude,
and a corresponding inversion code is under construction.
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Appendix A: Computing intensity responses
to opacity and emissivity perturbations

A necessary ingredient in the computation of the response func-
tion for the intensity is the computation of the derivative of the
specific monochromatic intensity in a given point with respect to
opacity and emissivity everywhere in the atmosphere, that is

∂Il

∂χ′l

and

∂Il

∂η′l
,

where, for reasons of clarity, we have omitted the dependence on
direction and wavelength. The specific intensity depends on the
emissivity and the opacity everywhere in the atmosphere through
the radiative transfer equation, which in most cases needs to be
solved numerically. Thus, the value of the intensity will depend
not only on the opacity and emissivity, but also on the selected
numerical scheme.

It is important to realize that because different radiative trans-
fer solvers yield different results, the use of different solvers will
result in different inversion results. We can only try to ensure that
our solver is sufficiently accurate for the question at hand and in
light of the observational uncertainties.

After adopting a specific formal solver, the task is to compute
the response of the intensity in point l to an infinitesimal per-
turbation of opacity and emissivity in point l′. del Toro Iniesta
(2003) proposed an analytic approach, which, in the scalar case,
yields

dδI
ds

= −χδI + ηeff , (A.1)

where

ηeff = δη − δχI (A.2)

and quantities with the prefix δ refer to perturbed quantities.
Equation (A.1) is then solved by a suitable numerical method,
typically the same one that was used to solve the radiative trans-
fer equation to obtain the spectrum itself. This approach would
be exact if the numerical solution were infinitely precise. This
is, however, not the case, as integrating different functions on a
discrete grid yields different inaccuracies.

An accurate result can be obtained by following the actual
process used to obtain the numerical formal solution and system-
atically propagating the derivative of each expression through to
the end. For this work we use a second-order Bezier solver, as in
de la Cruz Rodríguez & Piskunov (2013), where the intensity in
point l is computed using

Il = Il−1e−∆ + wl−1(∆)S l−1 + wl(∆)S l + wC(∆)C, (A.3)

where ∆ = |τl − τl−1| and C is the control point, which is com-
puted from the derivative of the source function with respect to
the optical depth.

For two given arrays containing the values of χ and η for a
particular direction and wavelength, it is necessary to first com-
pute the optical depth scale, source function, and source func-
tion derivative with respect to the optical depth before the Bezier
solver can be employed. The computation of the responses of
the intensity with respect to the opacity and the emissivity has a
few additional steps and requires the derivatives of all quantities
in Eq. (A.3) with respect to the opacity and the emissivity. The
process consists of the following steps:

1. given the opacity, numerically compute its spatial derivative
needed to perform the spatial integration of the opacity, i.e.,
to get the optical depth;

2. compute the response of the opacity derivative to unit pertur-
bations in the opacity at each point;

3. from the values of the opacity and the spatial opacity deriva-
tive, compute the optical depth scale;

4. from the perturbations of the opacity and the perturbations
of the opacity derivative, compute the perturbations of the
optical depth scale;

5. from the emissivity and the opacity, compute the source
function (S ) and the perturbations to the source function;

6. from the values of the source function, compute the deriva-
tive of the source function with respect to the optical depth
scale (dS/dτ);

7. from the perturbations of the source function and the pertur-
bations of the optical depth, compute the perturbations of the
derivative of the source function;

8. using S and dS/dτ, following the Bezier scheme, formally
solve the radiative transfer equation to obtain the specific
monochromatic intensity at each point in the atmosphere;

9. finally, using the responses of S and dS/dτ, compute the re-
sponse of the intensity at each point in the atmosphere to
perturbations in the opacity and the emissivity in each point
of the atmosphere.

The above procedure is cumbersome, especially once translated
into actual equations, but straightforward, and it yields the re-
sponses (∂Il/∂χl′ and ∂Il/∂ηl′ ), which agree with those computed
using finite differences down to the level of the nonlinearity of
the solution as exposed by the finite step size of the finite dif-
ference approximation. After these values are computed, the re-
sponse of the intensity at any point to any combination of per-
turbations in the opacity and the emissivity can be found easily
through

δIl =
∑

l′

[
∂Il

∂χl′
δχl′ +

∂Il

∂ηl′
δηl′

]
. (A.4)

We use this method for the construction of the left-hand side ma-
trix (i.e., when computing level responses) and for propagating
opacity and emissivity perturbations once the level perturbations
are known. This method provides very precise response func-
tions in the LTE case as well (in the case of LTE, level responses
can be found immediately), and it is quite possible that it will
enable better converging inversion schemes for LTE as well.
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