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ABSTRACT

The light curves of a diverse range of accreting objects show characteristic linear relationships between the short-term rms amplitude
of variability and the flux as measured on longer time-scales. This behaviour is thought to be imprinted on the light curves by
accretion rate fluctuations on different time-scales, propagating and coupling together through the accretion flow. Recently, a simple
mathematical interpretation has been proposed for the rms-flux relation, where short-term variations are modulated by a single slower
process. Here we show that this model was already considered and ruled out by another publication on the grounds that it did not
produce the observed broad time-scale dependence of the rms-flux relation and associated lognormal flux distribution. We demonstrate
the problems with the model via mathematical arguments and a case-study of Cyg X-1 data compared with numerical simulations.
We also highlight another conclusion of our original work, which is that a linear rms-flux relation is easy to produce using a variety
of models with positively skewed flux distributions. Observing such a relation in a non-accreting object (e.g. in solar flares) does not
necessarily imply a phenomenological connection with the behaviour of accretion flows, unless the relation is seen over a similarly
broad range of time-scales.
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1. Introduction

An apparently universal feature of the aperiodic “flickering”
flux variability seen from accreting compact objects is that
they show a linear relationship between the rms amplitude
of short-term variability and flux variations on longer time-
scales. This so-called “rms-flux relation” was first discovered
by Uttley & McHardy (2001) in the X-ray light curves of X-ray
binary systems (XRBs, both neutron star and black hole) as
well as active galactic nuclei (AGN). Since then, rms-flux re-
lations have been found to be ubiquitous in the X-ray emission
from black hole XRBs in different spectral states (Gleissner et al.
2004; Heil et al. 2012) and are also seen in the fast optical vari-
ability from hard state black hole XRBs (Gandhi 2009). Lin-
ear rms-flux relations are also present in the X-ray variabil-
ity from ultraluminous X-ray sources (Heil & Vaughan 2010;
Hernández-García et al. 2015) as well as the short-time-scale
optical variability of a blazar (Edelson et al. 2013). Expand-
ing its scope beyond the most compact accreting objects, lin-
ear rms-flux relations are found in the broadband noise vari-
ability seen from accreting white dwarfs (Scaringi et al. 2012;
Van de Sande et al. 2015; Dobrotka & Ness 2015) and even in
young stellar objects (YSOs, Scaringi et al. 2015).

A very important and often not well-appreciated property
of the rms-flux relation, is that in cases where data are good
enough that it can be studied on different time-scales, it turns
out that the linear rms-flux relation occurs on all measured time-
scales (Uttley et al. 2005, henceforth UMV05). In other words,
not only does the rms measured in short (e.g. 1 s) segments track

the flux on longer time-scales (e.g. 10 s), but the rms varia-
tions produced on those longer time-scales also track the flux
variations on even longer time-scales, for example, minutes (see
UMV05 and a more extensive discussion in Vaughan & Uttley
2008). This result has the corollary that the variability process is
inherently non-linear and that, if the variability process is statis-
tically stationary on long time-scales and stochastic fluctuations
on different time-scales multiply together, the resulting (station-
ary) flux distribution should be lognormal. Such lognormal flux
distributions are indeed observed from the data for X-ray bina-
ries, AGN, and accreting white dwarfs (Gaskell 2004; UMV05;
Scaringi et al. 2012). All of these results tie in with the idea
that the particular rms-flux relation seen in accreting systems
is linked to the common feature: the accretion flow itself, with
variations produced by turbulent fluctuations in mass-accretion
rate arising at different radii, which propagate through the flow
so that variability is coupled together over and between a broad
range of time-scales (Lyubarskii 1997; King et al. 2004; Arévalo
& Uttley 2006; Ingram & van der Klis 2013; Scaringi 2014;
Cowperthwaite & Reynolds 2014; Hogg & Reynolds 2016). It
is possible that linear rms-flux relations are produced by other
types of process but these are not expected to show the rela-
tion across and between a broad range of time-scales, as well as
the corresponding lognormal flux distributions (see Appendix in
UMV05 and Sect. 4 of this Letter).

Recently, Koen (2016, henceforth K16) proposed a simple
model for the linear rms-flux relation seen from accreting ob-
jects. The K16 model invokes a simple scaling of a stationary
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statistical process meaning that the rms on the time-scales dom-
inated by that process scales linearly with the scaling factor,
which itself is time-variable. However, only two components
couple together. The scaling factor is coupled to the short-term
variability and there is no coupling of multiple variability com-
ponents across a wider range of time-scales, as suggested by
UMV05 and consistent with observations as well as predicted
by models for accretion variability. It is therefore important to
check whether or not this simple prescription is really a valid
description of the observed light curves. Here we show that it is
not, and that this was, in fact, already discussed and ruled out by
UMV05.

2. Koen’s model for the rms-flux relation

Following the notation of K16, the model can be written as:

X(t) = g(t)z(t), (1)

where g(t) is a “smooth trend” while z(t) is a more rapidly vary-
ing stationary stochastic process (K16 assume either a simple
Gaussian independent and identically distributed variable, or a
time-series produced by an autoregressive process). Thus, since
the variations of z(t) are assumed to be independent of those of
g(t), both the mean and the rms of variations of X(t) on time-
scales dominated by z(t) will simply scale with the value of g(t),
to produce a linear rms-flux relation. However, while the K16
model limits the number of light curve components which must
be multiplied together, this is also the downfall of the model,
such that it does not reflect the observed light curve behaviour in
accreting systems in two important ways.

Firstly, the K16 model does not predict that the rms-flux re-
lation applies over and between a broad range of time-scales:
the time series g(t) does not itself scale with another longer-
time-scale time series, contrary to what is seen in observed light
curves of accreting objects. In fact, the model of K16 was already
explicitly considered and rejected for this reason by UMV05 (see
Sect. 3.2 of that paper), where it is described as being analogous
to a simple “volume control” on an amplifier or sound system.
The rms amplitude of short-time-scale variations corresponds to
the volume setting, which can itself be varied on longer time-
scales. However, to reproduce the data, these longer time-scale
variations would also need to follow a linear rms-flux relation
(i.e. they must also be considered as a volume setting to be varied
on even longer time-scales), with the amplitudes of those even
longer time-scale variations modulated in the same way, and so
on. This crucial ingredient is missing from the K16 model.

Secondly, the K16 model does not predict the observed log-
normal flux distributions which (as shown in UMV05) arise
from stationary time series when the rms-flux relation applies
on all measured time-scales. This is simply because log[X(t)] =
log[g(t)] + log[z(t)], meaning that X(t) is only lognormally dis-
tributed if g(t) and z(t) are both also lognormally distributed,
which would only be the case if they also followed linear rms-
flux relations on all time-scales (UMV05). We note here that the
simulated light curves presented in K16 are in any case not sta-
tionary and bear little resemblance to the “broadband noise” or
“flickering”-type light curves of real accreting sources (with sim-
ilar amplitudes of variability per decade range in time-scale). It
would be easy to adapt the K16 model so that the light curves are
stationary, for example, by using an autoregressive time-series
model for g(t). Such an adaptation would still not produce the
required lognormal flux distribution, however, unless both g(t)
and z(t) were already lognormally distributed.

Finally, it is important to stress here that the fact that the
rms-flux relation applies across a broad range of measured time-
scales and that the flux distributions are lognormal are not merely
“ingredients” of the model of UMV05, they are observational re-
sults which support the interpretation that variations must mul-
tiply together over a broad range of time-scales. Any model that
does not replicate those basic observational results (including the
model of K16) is falsified, even if it can explain other aspects of
the light curves such as the shape of the power spectrum.

3. A case study1

To demonstrate that the K16 model for the rms-flux relation does
not adequately describe the other key properties of the data de-
scribed in the last section (lognormal flux distribution and linear
rms-flux on a broad range of time-scales), even while it can re-
produce the observed power spectrum, we now conduct a simple
case-study using the Cyg X-1 December 1996 hard state Rossi
X-ray Timing Explorer (RXTE) observations that were also used
in UMV05. We will use this real light curve to determine the
shape of the power spectrum and then generate a light curve us-
ing the K16 model to match the shape of the power spectrum.
We will then demonstrate that the K16 simulated data shows a
flux distribution and rms-flux relations which bear little resem-
blance to those of the real data. Finally we will demonstrate that
the model of UMV05, where the flux is forced to be lognormally
distributed, can reproduce both the power spectrum and rms-flux
properties of the real data.

For simplicity we obtained the “Standard 1” light curves,
which contain the net count-rate in 0.125 s intervals across all
channels of the RXTE Proportional Counter Array (PCA). These
light curves cover a broader energy range than the 2−13 keV
band used in UMV05, but since the count rates are dominated
by the softer energies, we do not expect this to make much dif-
ference to our results compared to UMV05 (and we confirm this
to be the case). We chose the same relatively stationary section
of the light curve used in UMV05, which includes a subset of
the data from ObsIDs 10236-01-01-02, −020 and −021 with to-
tal exposure 38.5 ks. This is ∼20 per cent longer than the light
curve used in UMV05, due to more stringent good-time-intervals
used in that paper, which are relaxed now that the RXTE mission
calibration has matured.

As we have already noted, the K16 model assumes a deter-
ministic long time-scale driving time-series g(t). Such a time-
series model, with large long-term variability trends and a cor-
respondingly steep power spectrum, does not produce power
spectra resembling those of real accreting sources, which in
the hard state of black hole XRBs resemble a sum of broad
Lorentzian components (Pottschmidt et al. 2003). Therefore, for
the K16 model, we instead assume a more plausible driving sig-
nal, where the lowest-frequency Lorentzian in the broadband
PSD is assumed to drive the variations of the sum of the higher-
frequency Lorentzians. To construct the model we first fit the
power-spectrum of the real data, with three broad Lorentzian
components, using the model prescription of Pottschmidt et al.
(2003). We allow all parameters (Lorentzian peak frequency, in-
tegrated fractional rms and the frequency coherence q) to vary
except q for the highest-frequency Lorentzian, which we fix to
q = 0.3 since this component lies at the edge of the measured
frequency range and is otherwise degenerate in its parameters.

1 In the spirit of reproducible research, the data and the Python Jupyter
Notebook used for this analysis is available at https://github.com/
philuttley/uttleymchardyvaughan17
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Fig. 1. Comparison of real Cyg X-1 hard state data (blue circles) with simulated data showing the same power spectrum, made using the K16
model (green triangles) or the “exponentiated” model of UMV05 (open red squares). Top left: power spectra of the light curves, including the
best-fitting Lorentzian decomposition for the real data (black lines, total model line in solid red). Top right: flux distributions (flux normalised by
mean count rate), models (coloured lines) and data/model ratios for a fit to a lognormal model with constant offset constrained to be non-negative.
Bottom panels: the rms-flux relations of the light curves obtained for rms measured on two different time-scale ranges, short (0.125−1 s, bottom left
panel) and long (4−32 s, bottom right panel). Best-fitting linear (plus constant) relations are also shown as dotted lines. For the flux distributions
and rms-flux relations, the K16 model is strongly inconsistent with the data, while the UMV05 model works reasonably well.

The resulting fit is reasonable given the simplicity of the model
and good data quality (χ2 = 81.3 for 67 d.o.f.) and the data and
best-fitting model (including the decomposition in terms of sep-
arate Lorentzians) is shown in Fig. 1 (top left panel).

We next confirmed one of the key results of UMV05 by fit-
ting a three-parameter lognormal model to the flux distribution
of the real light curve (flux is normalised by the mean count rate).
The observed distribution, best-fitting model (see UMV05 for
the model description) and data/model ratio are shown in Fig. 1
(top right panel). The lognormal model provides a good fit to
the data over most of the measured flux range, although the fit
is poorer in the tails of the distribution (resulting in χ2 = 86.6
for 52 d.o.f., similar to the quality obtained by UMV05). The
best-fitting parameters are shape parameter σ = 0.36, location
parameter τ = 0.16 and scale parameter ln(µ) = 0.79. We do not
quote errors on these values since the fit is not formally accept-
able, but we note that they are consistent with the parameters
obtained by us for the fit in UMV05. The deviations from the
model may result from a number of subtle aspects of the data,
for example, the fact that the lognormal distribution is slightly
distorted by Poisson deviations in the observed count rate, or
that the light curve is not strictly stationary, or perhaps due to
real physical effects not accounted for by such a simple mathe-
matical model. Nevertheless, we will see that the lognormal fit
is a much better match to the data than to a simulated light curve
based on the K16 model.

To simulate the K16 version of the light curve, we used the
approach of Timmer & Koenig (1995) to simulate zero-mean
Gaussian flux-distributed light curves (with the same length as
the original data) for each of the three Lorentzian components
(using the Lorentzian parameters obtained from the fit to the real
data), which we call (in order of frequency) l1(t), l2(t), and l3(t).
We then construct the K16 model light curve as follows:

XK16(t) = (1 + l1(t)) (1 + l2(t) + l3(t)) , (2)

that is, l1(t) subsumes the role of the slowly varying time-series
g(t) (although in this case, it is Gaussian distributed and sta-
tionary; the latter being required to fit the power spectrum),
while (l2(t) + l3(t)) takes the role of the short-term Gaussian-
distributed component z(t). Finally, we scaled the light curve to
the observed mean count rate and included Poisson noise. The
power spectrum of this K16 simulated light curve is also in-
cluded in Fig. 1 (top left panel), which shows that it is a close
match to the power spectrum of the real data.

We next fitted the lognormal model to the flux distribution
of the K16 light curve. If we apply no constraints to the model
parameters, we can return a reasonable fit, but only with negative
values of the location parameter, which when combined with a
large scale-parameter can produce distributions which are close
to normally distributed, rather than pure, lognormal. However,
this situation would correspond to unphysical negative constant
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offsets in the flux distribution, as opposed to the physically plau-
sible situation of a positive offset as seen in the real data, which
could be explained by the presence of a constant-flux compo-
nent. Therefore we restrict the offset τ to be >0, which makes
the fit to the lognormal model much worse than seen in the real
data (as can be seen Fig. 1, top right panel).

We also compared the rms-flux relations of the light curves
obtained for two different time-scales. The short-term rms-flux
relation was obtained by binning the variance obtained in 1 s seg-
ments according to flux (then subtracting the expected Poisson
noise contribution and taking the square-root to get the rms). The
long-term rms-flux relation was obtained by first binning up the
0.125 s resolution light curves to 4 s resolution, and then measur-
ing the rms-flux relation in the same way as for the short-term
relation, except using 32 s segments. Thus the short-term rela-
tion is driven by the sub-second rms of the l2 and l3 Lorentzians
responding to modulation by the l1 Lorentzian, while the long-
term rms is dominated more by the l1 Lorentzian, which is not
modulated by any additional time-scales.

The rms-flux relations are shown in the bottom panels of
Fig. 1. As expected, both the real data and the K16 model light
curves show close to linear short-term rms-flux relations, al-
though the slope for the K16 simulation is significantly flatter
than in the real data, which is likely due to the contribution of the
l1 Lorentzian to the sub-second variability (since it adds an rms
component which does not depend on the flux). The long-term
rms-flux relation of the K16 model light curve is close to being
constant, rather than linear, which is as expected since this com-
ponent does not have any rms-flux relation built in due to varia-
tions on even longer time-scales. In contrast, the real data show a
clear linear rms-flux relation on both long and short time-scales.

For comparison, we also simulated a light curve using the
“exponentiation” approach of UMV05, which is designed ex-
plicitly to produce the observed lognormal flux distribution seen
in the data and hence (as shown in UMV05) also produce the lin-
ear rms-flux relations seen on all time-scales. The model works
simply by taking the exponential of a Gaussian-distributed time
series such that the resulting flux distribution is lognormal. In
the case of our multiple-Lorentzian power spectrum, the op-
eration simply involves taking the exponential of the sum of
(zero-mean) simulated Lorentzian light curves generated using
the Timmer & Koenig (1995) approach, that is:

Xexp(t) = exp
(
l′1(t) + l′2(t) + l′3(t)

)
. (3)

The primes denote that we followed the approach of UMV05 in
reducing the amplitudes of the input Lorentzians used to make
the original Gaussian-distributed light curves, to account for the
effect of exponentiating the combined light curve (since this
transformation increases the rms amplitude). Besides ensuring
that the final fractional rms matches that of the data, we also
choose the lognormal location parameter τ = 0.16, to match that
of the real data. We apply the same analysis as for the real data
and K16 simulation and the results are included in all the plots
in Fig. 1.

The exponentiated light curve shows a similar power spec-
trum to the real data and has a lognormal flux distribution by
construction which, as expected, looks very similar to that of
the real data. The rms-flux relations are also similar to those of
the real data on both long and short time-scales. There are small
differences but these are expected given that the exponentiation
approach is very simplified, while real data shows more com-
plex behaviour (e.g. in higher-order statistics such as the bicoher-
ence, UMV05). In conclusion, our simulated exponentiated light

curve shows a flux distribution and rms-flux relations, which ap-
pear more similar to the real data than the K16 model light curve
does. Thus, our simulations demonstrate the arguments made in
the previous section.

4. Some final remarks

It is important to note that a linear rms-flux relation by itself is
not evidence for the same kind of variability process that pro-
duces lognormal flux distributions and linear rms-flux relations
across a broad range of time-scales. As noted in UMV05 (we
refer to Appendix D of that paper), linear rms-flux relations can
result generally from light curves with positively skewed flux
distributions, provided that the rms, which is plotted versus flux,
corresponds to a large fraction of the total variability amplitude
(i.e. the rms of segments is relatively large compared to the am-
plitude of variations which produce the variations in mean flux
of the segments). This situation can occur in time series that do
not have very broad power spectra, unlike those seen in accret-
ing objects where a broad range of frequencies contribute sim-
ilar amounts to the total variability amplitude. This property of
time series with positively skewed flux distributions and rela-
tively narrow-band power spectra can explain the presence of
linear rms-flux relations in models distinct from the propagat-
ing fluctuations model, such as the “thundercloud model” of
Merloni & Fabian (2001). This effect can also explain the pres-
ence of linear rms-flux relations in diverse data such as light
curves of solar flares (Zhang 2007), where the rms variability
amplitude in 1 s intervals is of a similar order to the highly
skewed and non-linear flux variation on longer time-scales. The
presence of linear rms-flux relations should therefore not be
taken as an indication of similar variability processes to those
seen in accreting systems, unless the effects of the flux distribu-
tion and power-spectral shape are also accounted for.
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